
WhatsApp
Encryption Overview
Technical white paper

Version 6 Updated January 24, 2023
Version 5 Preview (Applicable to Multi-Device Beta Only) Updated September 27, 2021
Version 4 Preview (Applicable to Multi-Device Beta Only) Updated July 14, 2021
Version 3 Updated October 22, 2020
Version 2 Updated December 19, 2017
Version 1 Originally published April 5, 2016

Contents

Introduction . 3

Terms . 3

Client Registration . 5

Initiating Session Setup . 6

Receiving Session Setup . 7

Exchanging Messages . 8

Transmitting Media and Other Attachments 9

Group Messages . 10

Message Add-ons in Community Announcement Groups 11

Sender Side Backfill . 12

Message History Syncing . 13

Call Setup . 13

Group Calling . 14

Statuses . 14

Live Location . 15

App State Syncing Security . 17

Verifying Keys . 24

Companion Device Removal . 24

Transport Security . 26

Defining End-to-End Encryption . 26

Implementation on WhatsApp Services 27

Encryption Has No Off Switch . 28

Displaying End-to-End Encryption Status 28

Conclusion . 29

2 WhatsApp Encryption Overview

JANUARY 24, 2023

Messaging Security

Introduction

This white paper provides a technical explanation of WhatsApp’s end-to-end
encryption system. Please visit WhatsApp’s website at www.whatsapp.com/
security for more information.

WhatsApp Messenger allows people to exchange messages (including chats,
group chats, images, videos, voice messages and files), share status posts,
and make WhatsApp calls around the world. WhatsApp messages, voice, and
video calls between a sender and receiver that use WhatsApp client software
use the Signal protocol outlined below. See “Defining End-to-End Encryption”
for information about which communications are end-to-end encrypted.

The Signal Protocol, designed by Open Whisper Systems, is the basis for
WhatsApp’s end-to-end encryption. This end-to-end encryption protocol is
designed to prevent third parties and WhatsApp from having plaintext access
to messages or calls. Due to the ephemeral nature of the cryptographic keys,
even in a situation where the current encryption keys from a user’s device
are physically compromised, they cannot be used to decrypt previously
transmitted messages.

A user can have multiple devices, each with its own set of encryption keys. If
the encryption keys of one device are compromised, an attacker cannot use
them to decrypt the messages sent to other devices, even devices registered
to the same user. WhatsApp also uses end-to-end encryption to encrypt the
message history transferred between devices when a user registers a new
device.

This document gives an overview of the Signal Protocol and its use in WhatsApp.

Terms

Device Types
• Primary device - A device that is used to register a WhatsApp account

with a phone number. Each WhatsApp account is associated with a
single primary device. This primary device can be used to link additional
companion devices to the account. Supported primary device platforms
include Android and iPhone.

• Companion device - A device that is linked to an existing WhatsApp
account by the account’s primary device. Primary device platforms, such
as iPhone and Android, do not support being linked as a Companion
device.

3 WhatsApp Encryption Overview

JANUARY 24, 2023

Public Key Types
• Identity Key Pair – A long-term Curve25519 key pair, generated

at install time.

• Signed Pre Key – A medium-term Curve25519 key pair, generated
at install time, signed by the Identity Key, and rotated on a periodic
timed basis.

• One-Time Pre Keys – A queue of Curve25519 key pairs for one
time use, generated at install time, and replenished as needed.

Session Key Types
• Root Key – A 32-byte value that is used to create Chain Keys.

• Chain Key – A 32-byte value that is used to create Message Keys.

• Message Key – An 80-byte value that is used to encrypt message
contents. 32 bytes are used for an AES-256 key, 32 bytes for a HMAC-
SHA256 key, and 16 bytes for an IV.

Other Key Types
• Linking Secret Key - A 32-byte value that is generated on a

companion device and must be passed by a secure channel to the
primary device, used to verify an HMAC of the linking payload received
from a primary device. The transmission of this key from companion
devices to the primary device is done by scanning a QR code.

 Companion Linking
• Linking Metadata - An encoded blob of metadata assigned to a com-

panion device during linking, used in conjunction with the companion
device’s Identity Key to identify a linked companion on WhatsApp
clients.

• Signed Device List Data - An encoded list identifying the currently
linked companion devices at the time of signing. Signed by the primary
device’s Identity Key using the 0x0602 prefix.

• Account Signature - A Curve25519 signature computed over the 0x0600
prefix, Linking Metadata, and companion device’s public Identity
Key using a primary device’s Identity Key.

• Device Signature - A Curve25519 signature computed over the 0x0601
prefix, Linking Metadata, companion device’s public Identity Key,
and primary’s devices public Identity Key using a companion
device’s Identity Key.

4 WhatsApp Encryption Overview

JANUARY 24, 2023

Client Registration

Primary Device Registration

At registration time, a WhatsApp client transmits its public Identity Key,
public Signed Pre Key (with its signature), and a batch of public One-Time
Pre Keys to the server. The WhatsApp server stores these public keys
associated with the user’s identifier.

Companion Device Registration

To link a companion device to a WhatsApp account, the user’s primary
device must first create an Account Signature by signing the new device’s
public Identity Key and the companion device must create a Device
Signature by signing the primary’s public Identity Key. Once both sig-
natures are produced, end-to-end encrypted sessions can be established
with the companion device.

To link a companion device:

1.	 The companion client displays its public Identity Key (Icompanion) and
a generated ephemeral Linking Secret Key (Lcompanion) in a linking QR
code. Lcompanion is never sent to WhatsApp server.

2.	 The primary client scans the linking QR code and saves Icompanion to disk.

3.	 The primary loads its own Identity Key as Iprimary.

4.	 The primary generates Linking Metadata as Lmetadata and updated Device
List Data containing the new companion as ListData.

5.	 The primary generates an Account Signature for the companion, Asignature
= CURVE25519_SIGN(Iprimary, 0x0600 || Lmetadata || Icompanion).

6.	 The primary generates a Device List Signature for the updated Device
List Data, ListSignature = CURVE25519_SIGN(Iprimary, 0x0602
|| ListData).

7.	 The primary serializes the Linking Data (Ldata) containing Lmetadata,
Iprimary and Asignature.

8.	 The primary generates a Linking HMAC, PHMAC = HMAC-
SHA256(Lcompanion, Ldata).

9.	 The primary sends ListData, ListSignature, Ldata and PHMAC
to WhatsApp server. See “Transport Security” for information about the
secure connection between WhatsApp clients and servers.

10.	 The server stores ListData and ListSignature, and forwards Ldata
and PHMAC to the companion.

5 WhatsApp Encryption Overview

JANUARY 24, 2023

11.	 The companion verifies PHMAC, decodes Ldata into Lmetadata,
Iprimary and Asignature, and verifies Asignature.

12.	 The companion saves Lmetadata and Iprimary to disk.

13.	 The companion generates a Device Signature for itself, Dsignature =
CURVE25519_SIGN(Icompanion, 0x0601 || Lmetadata || Icompanion
|| Iprimary).

14.	 The companion uploads Lmetadata, Asignature, Dsignature, Icompanion,
the companion’s public Signed Pre Key (with its signature), and a batch
of public One-Time Pre Keys to WhatsApp server.

15.	 The server stores the uploaded data associated with the user’s identifier
combined with a device specific identifier.

Initiating Session Setup
In order for WhatsApp users to communicate with each other securely and
privately, the sender client establishes a pairwise encrypted session with each
of the recipient’s devices. Additionally, the sender client establishes a pairwise
encrypted session with all other devices associated with the sender account.
Once these pairwise encrypted sessions have been established, clients do not
need to rebuild new sessions with these devices unless the session state is lost,
which can be caused by an event such as an app reinstall or device change.

WhatsApp uses this “client-fanout” approach for transmitting messages to
multiple devices, where the WhatsApp client transmits a single message N
number of times to N number of different devices. Each message is individually
encrypted using the established pairwise encryption session with each device.

To establish a session:

1.	 The initiating client (“initiator”) requests the public Identity Key, public
Signed Pre Key, and a single public One-Time Pre Key for each device of
the recipient and each additional device of the initiating user (excluding
the initiator).

2.	 The server returns the requested public key values. A One-Time Pre
Key is only used once, so it is removed from server storage after being
requested. If the recipient’s latest batch of One-Time Pre Keys has been
consumed and the recipient has not replenished them, no One-Time Pre
Key will be returned. Additionally, for each companion device (for both the
initiator’s account and the recipient’s), the server also returns the Linking
Metadata (Lmetadata), Account Signature (Asignature) and Device signature
(Dsignature) that was uploaded by the companion device when linked.

3.	 For every returned key set for a companion device, the initiator needs to
verify Asignature by CURVE25519_VERIFY_SIGNATURE(Iprimary,
0x0600 || Lmetadata || Icompanion), and Dsignature by CURVE25519_
VERIFY_SIGNATURE(Icompanion, 0x0601 || Lmetadata || Icompanion

6 WhatsApp Encryption Overview

JANUARY 24, 2023

|| Iprimary). If any of the verification fails for a companion device, the
initiator terminates the encryption session building process immediately
and will not send any messages to that device.

After getting the keys from server and verifying each device identity, the
initiator starts to establish the encryption session with each individual device:

1.	 The initiator saves the recipient’s Identity Key as Irecipient, the Signed
Pre Key as Srecipient, and the One-Time Pre Key as Orecipient.

2.	 The initiator generates an ephemeral Curve25519 key pair, Einitiator.

3.	 The initiator loads its own Identity Key as Iinitiator.

4.	 The initiator calculates a master secret as master_secret =
ECDH(Iinitiator, Srecipient) || ECDH(Einitiator, Irecipient) ||
ECDH(Einitiator, Srecipient) || ECDH(Einitiator, Orecipient).
If there is no One Time Pre Key, the final ECDH is omitted.

5.	 The initiator uses HKDF to create a Root Key and Chain Keys from
the master_secret.

Receiving Session Setup
After building a long-running encryption session, the initiator can immediately
start sending messages to the recipient, even if the recipient is offline.

Until the recipient responds, the initiator includes the information (in the header
of all messages sent) that the recipient requires to build a corresponding
session. This includes the initiator’s (Einitiator and Iinitiator). Additionally,
if the initiator is a companion device, it also includes its Iprimary, Lmetadata,
Asignature and Dsignature.

When the recipient receives a message that includes session setup information:

1.	 If the sender is a companion device, the recipient needs to verify
Asignature by CURVE25519_VERIFY_SIGNATURE(Iprimary, 0x0600 || Lmetadata
|| Icompanion), and Dsignature by CURVE25519_VERIFY_SIGNATURE(Icompanion,
0x0601 || Lmetadata || Icompanion || Iprimary). If any of the verifications fail, the
receiver stops building the encryption session and rejects the message
from that sender device.

2.	 The recipient calculates the corresponding master_secret using its own
private keys and the public keys advertised in the header of the incoming
message.

3.	 The recipient deletes the One-Time Pre Key used by the initiator.

4.	 The initiator uses HKDF to derive a corresponding Root Key and Chain
Keys from the master_secret.

7 WhatsApp Encryption Overview

JANUARY 24, 2023

Exchanging Messages
Once a session has been established, clients exchange messages that are
protected with a Message Key using AES256 in CBC mode for encryption
and HMAC-SHA256 for authentication. The client uses client-fanout for all
the exchanged messages, which means each message is encrypted for each
device with the corresponding pairwise session.

The Message Key changes for each message transmitted, and is ephemeral,
such that the Message Key used to encrypt a message cannot be reconstructed
from the session state after a message has been transmitted or received.

The Message Key is derived from a sender’s Chain Key that “ratchets”
forward with every message sent. Additionally, a new ECDH agreement is
performed with each message roundtrip to create a new Chain Key. This
provides forward secrecy through the combination of both an immediate
“hash ratchet” and a round trip “DH ratchet.”

Calculating a Message Key from a Chain Key

Each time a new Message Key is needed by a message sender, it is calcu-
lated as:

1.	 Message Key = HMAC-SHA256(Chain Key, 0x01).

2.	 The Chain Key is then updated as Chain Key =
HMAC-SHA256(Chain Key, 0x02).

This causes the Chain Key to “ratchet” forward, and also means that a
stored Message Key can’t be used to derive current or past values of the
Chain Key.

Calculating a Chain Key from a Root Key

Each time a message is transmitted, an ephemeral Curve25519 public key
is advertised along with it. Once a response is received, a new Chain Key
and Root Key are calculated as:

1.	 ephemeral_secret =
ECDH(Ephemeralsender, Ephemeralrecipient).

2.	 Chain Key, Root Key =
HKDF(Root Key, ephemeral_secret).

A chain is only ever used to send messages from one user, so message keys
are not reused. Because of the way Message Keys and Chain Keys are
calculated, messages can arrive delayed, out of order, or can be lost entirely
without any problems.

8 WhatsApp Encryption Overview

JANUARY 24, 2023

In Chat Device Consistency

In end-to-end encrypted chats, for each outgoing message to a pairwise
encryption session, including those sent during session setup, the sender
includes information about the list of the sender and receiver’s devices inside
the encrypted payload. This information includes:

1.	 The timestamp of the sender’s most recent Signed Device List

2.	 A flag indicating whether the sender has any companion devices
currently linked

3.	 The timestamp of the recipient’s most recent Signed Device List

4.	 A flag indicating whether the recipient has any known linked
companion devices

When performing “client-fanout” to your own devices, 3 and 4
above continue to refer to the recipient of the original message.

Transmitting Media and Other
Attachments
Large attachments of any type (video, audio, images, or files) are also end-
to-end encrypted:

1.	 The WhatsApp user’s device sending a message (“sender”) generates
an ephemeral 32 byte AES256 key, and an ephemeral 32 byte
HMAC-SHA256 key.

2.	 The sender encrypts the attachment with the AES256 key in CBC
mode with a random IV, then appends a MAC of the ciphertext using
HMAC-SHA256.

3.	 The sender uploads the encrypted attachment to a blob store.

4.	 The sender transmits a normal encrypted message to the recipient
that contains the encryption key, the HMAC key, a SHA256 hash of the
encrypted blob, and a pointer to the blob in the blob store.

5.	 All receiving devices decrypt the message, retrieve the encrypted blob
from the blob store, verify the SHA256 hash of it, verify the MAC, and
decrypt the plaintext.

9 WhatsApp Encryption Overview

JANUARY 24, 2023

Group Messages
End-to-end encryption of messages sent to WhatsApp groups utilize the
established pairwise encrypted sessions, as previously described in the
“Initiation Session Setup” section, to distribute the “Sender Key” component
of the Signal Messaging Protocol.

When sending a message to a group for the first time, a “Sender Key” is
generated and distributed to each member device of the group, using the
pairwise encrypted sessions. The message content is encrypted using the
“Sender Key”, achieving an efficient and secure fan-out for the messages
that are sent to groups.

The first time a WhatsApp group member sends a message to a group:

1.	 The sender generates a random 32-byte Chain Key.

2.	 The sender generates a random Curve25519 Signature Key
key pair.

3.	 The sender combines the 32-byte Chain Key and the public key from
the Signature Key into a Sender Key message.

4.	 The sender individually encrypts the Sender Key to each
member of the group, using the pairwise messaging protocol explained
previously.

For all subsequent messages to the group:

1.	 The sender derives a Message Key from the Chain Key, and updates
the Chain Key.

2.	 The sender encrypts the message using AES256 in CBC mode.

3.	 The sender signs the ciphertext using the Signature Key.

4.	 The sender transmits the single ciphertext message to the server, which
does server-side fan-out to all group participants.

The “hash ratchet” of the message sender’s Chain Key provides forward
secrecy. Whenever a group member leaves, all group participants clear their
Sender Key and start over.

In Chat Device Consistency information is included when distributing a
“Sender Key” and then excluded from the subsequent messages encrypted
with the Sender Key.

10 WhatsApp Encryption Overview

JANUARY 24, 2023

Message Add-ons in Community
Announcement Groups
Group members cannot send regular messages in Community Announcement
Groups but are able to interact with messages such as reacting to them by
sending Message Add-ons. In order to improve the performance of Community
Announcement Groups we will use Add-on Sender Keys instead of traditional
Group Sender Keys to encrypt the Add-ons. When an admin sends a message
into a Community Announcement Group it will be encrypted with a traditional
“Group Sender Key” as described in “Group Messages”, the end-to-end encrypted
message payload will also contain a random key “Message Secret”.

End-to-end encryption of add-ons sent to WhatsApp Community Announcement
Groups utilize the established pairwise encrypted sessions, as previously
described in the “Initiation Session Setup” section, to distribute a dedicated
“Add-on Sender Key” component of the Signal Messaging Protocol. When
sending an Add-on to a Community Announcement Group for the first time,
an “Add-on Sender Key” is generated and distributed to each member device
of the group, using the pairwise encrypted sessions. The Add-on content is
encrypted using a key derived from the target message’s “Message Secret”
and then encrypted again using the “Add-on Sender Key”, achieving an efficient
and secure fan-out for the Add-ons that are sent to Community Announce-
ment Groups.

The first time a WhatsApp group member sends an Add-on to a Community
Announcement Group::

1.	 The sender generates a random 32-byte Chain Key.

2.	 The sender generates a random Curve25519 Signature Key
key pair.

3.	 The sender combines the 32-byte Chain Key and the public key from
the Signature Key into into an Add-on Sender Key message.

4.	 The sender individually encrypts the Add-on Sender Key to each member
of the community announcement group, using the pairwise messaging
protocol explained previously.

For all Add-ons sent to a community announcement group:

1.	 The sender derives an encryption key from the target message’s Message
Secret Add-on Target Key = HKDF(length=32, key=Target
Message Secret, info=Target Message Identifier ||
Target sender Identifier || Add-on Sender Identifier
|| “Add-on type string”).

2.	 The sender then encrypts the Add-on content with Add-on Target Key
using AES-256-GCM to produce inner ciphertext.

3.	 The sender derives a Message Key from the Chain Key, and updates
the Chain Key

11 WhatsApp Encryption Overview

JANUARY 24, 2023

4.	 The sender encrypts the inner ciphertext using AES256 in CBC mode to
produce outer ciphertext.

5.	 The sender signs the outer ciphertext using the Signature Key.

6.	 The sender transmits the single outer ciphertext Add-on message to the
server, which does server-side fan-out to all group participants.

The “hash ratchet” of the Add-on sender’s Chain Key in conjunction with
the target message’s message secret provides forward secrecy. Whenever a
group member leaves, all Admins clear their Group Sender Key and start
over. Group members, including admins, will not clear their Add-on Sender
Key when a group member leaves and instead will continue to use the existing
key to encrypt for the remaining participants of the group. When promoted
to admin group members will generate a new regular Group Sender Key but
will not update their Add-on Sender Key.

Sender Side Backfill
As described above, in WhatsApp, because each message is encrypted for
each device with the corresponding pairwise session, the sender client must
specify all the destination devices at the sending time. Any device which is not
listed at the sending time will not be able to receive the encrypted message.
Each client maintains a list of verified companion devices for WhatsApp
accounts the user communicates with, as well as all other devices associated
with it’s own account, and uses this list to specify the destination devices at
the sending time.

However, when sending a message, it is possible for a client to miss valid
companion devices if it’s maintained device list is out-of-date. The mechanism
“Sender Side Backfill” is designed so that these missed devices may recover
from permanently missing the entire message. When WhatsApp receives the
encrypted message from the sender, it compares the hash of all the destina-
tion devices listed by the sender, to the hash of server-side device records of
these accounts. If there is a mismatch between two hash values, the server
will notify the sender to update the devices list for itself and all the recipient
accounts. The sender client will verify all fetched new companion devices,
establish the pairwise sessions with those devices using the same method
described in the “Initiating Session Setup” section, encrypt and resend the
original message to these new devices.

To ensure the confidentiality of the message, this backfill mechanism is only
allowed within a short duration after the initial message sending. Additionally,
the backfill message will never be sent to any companion device which failed
the device verification. Moreover, during the backfill process, if a recipient
registers on a new phone, all it’s companion devices will be excluded from
the resending list. Therefore, the resend message will never be sent to any
companion device of a recipient with a changed identity key.

12 WhatsApp Encryption Overview

JANUARY 24, 2023

Message History Syncing
Immediately after linking a companion device, the primary device end-to-end
encrypts a copy of messages from recent chats. The primary device will
also include a copy of the user’s stored public identity key when copying
messages for one-to-one chats. This process, called Messaging History
Syncing, generates bundles of the end-to-end encrypted messages and other
data for the chat using the same mechanism of encryption as described in
the “Transmitting Media and Other Attachments” section. Steps 1 through 5
explain the specifics regarding key, IV, mac generation, as well as the encryp-
tion, transmission, and decryption of these end-to-end encrypted bundles.
Once a companion device has successfully decrypted, unpacked, and stored
all the messages of a given bundle, all the associated data (including the
downloaded encrypted bundle blob, the pointer to the encrypted blob storage,
and all the keys) are deleted from the companion device.

Call Setup
WhatsApp voice and video calls are end-to-end encrypted. When a WhatsApp
user initiates a voice or video call:

1.	 The initiating client (“initiator”) establishes encrypted sessions with
each of the devices of the recipient (as outlined in the Initiating Session
Setup Section), if these haven’t been set up yet.

2.	 The initiator generates a set of random 32-byte SRTP master secrets
for each of the recipient’s devices.

3.	 The initiator sends an incoming call message to each of the devices
of the recipient. Each recipient’s device receives this message, which
contains the end-to-end encrypted SRTP master secret.

4.	 If the responder answers the call from one of the devices, a SRTP
encrypted call is started, protected by the SRTP master secret gener-
ated for that device.

The SRTP master secret is persisted in memory on the client device and
used only during the call. WhatsApp servers do not have access to the
SRTP master secrets.

13 WhatsApp Encryption Overview

JANUARY 24, 2023

Group Calling
WhatsApp group calls are end-to-end encrypted. Unlike one-to-one calls that
setup keys only once, in group calls, keys are reset whenever a participant
joins the call or leaves the call.

Key reset in group calls is achieved by the following steps:

1.	 When a participant joins or leaves the call, the WhatsApp server arbitrarily
selects one of the active participants as the key distributor.

2.	 The key distributor generates a random 32-byte SRTP master secret.

3.	 The key distributor establishes an encrypted session with the active
device of each connected participant in the current group call (as outlined
in the Initiating Session Setup Section), if these haven’t been setup yet.

4.	 The key distributor initiates one message with end-to-end encrypted
SRTP master secret for each participant. When these messages are
delivered, a SRTP encrypted group call ensues.

Note that in a group call, a participant becomes active when they initiate
a group call or accepts the group call invitation from any of their devices.
Therefore each active participant has exactly one active device.

The SRTP master secret is persisted in-memory, and is overwritten when a
new SRTP master secret is generated and delivered. To continue decrypting
data encrypted with the old key while all participants transition to the new
key, the old `SRTP` crypto session is kept alive for upto 5 seconds after
group update.

Whatsapp servers do not have access to them, and cannot access the
actual audio and video media.

To ensure call quality and to avoid race conditions from conflicting user
actions, the WhatsApp server stores the state of the current group call (for
example: participant list, call initiator) and media metadata (e.g. resolution,
media type). With this information, the WhatsApp server is able to broadcast
participant membership changes and select one as key distributor to
initiate key reset. membership changes and select one as key distributor
to initiate key reset.

Statuses
WhatsApp statuses are encrypted in much the same way as group messages.
The first status sent to a given set of devices follows the same sequence
of steps as the first time a WhatsApp group member sends a message to
a group. Similarly, subsequent statuses sent to the same set of devices
follow the same sequence of steps as all subsequent messages to a group.
When a status sender removes a receiver either through changing status
privacy settings or removing a number from their address book, the status
sender clears their Sender Key and starts over.

14 WhatsApp Encryption Overview

JANUARY 24, 2023

Live Location
Live location messages and updates are encrypted in much the same way as
group messages. Currently, sending and receiving live locations is only supported
on primary devices. The first live location message or update sent follows the
same sequence of steps as the first time a WhatsApp group member sends
a message to a group. But, live location demands a high volume of location
broadcasts and updates with lossy delivery where receivers can expect to see
large jumps in the number of ratchets, or iteration counts. The Signal Protocol
uses a linear-time algorithm for ratcheting that is too slow for this application.
This document offers a fast ratcheting algorithm to solve this problem.

Chain keys are currently one-dimensional. To ratchet N steps takes N computa-
tions. Chain keys are denoted as CK(iteration count) and message keys
as MK(iteration count).

CK(0)

CK(1)

 …

CK(N-1) MK(N-1)

Consider an extension where we keep two chains of chain keys:

CK1(0) CK2(0)

CK1(1)	 CK2(1)

	…

CK2(M-1) MK(M-1)

In this example, message keys are always derived from CK2. A receiver
who needs to ratchet by a large amount can skip M iterations at a time (where M
is an agreed-upon constant positive integer) by ratcheting CK1 and generating
a new CK2:

CK1(0)

CK1(1) CK2(0) MK(M)

CK1(2)		 CK2(1)

15 WhatsApp Encryption Overview

JANUARY 24, 2023

A value of CK2 may be ratcheted up to M times. To ratchet N steps takes up to
[N÷M] + M computations.

After a sender creates a message key and encrypts a message with it, all chain
keys on the path that led to its creation must be destroyed to preserve forward
secrecy.

CK1(0)

CK1(1) CK2(0) MK(M)

CK1(2)	 CK2(1)

Generalizing to D dimensions, a sender can produce D initial chain keys. Each
chain key but the first is derived from the preceding chain key using a distinct
one-way function: these are the right-pointing arrows in the diagram above.
Senders distribute all D chain keys to receivers who need them, except as
noted below.

RNG CK1(0) CK2(0) … CKD(0)

Legal values for D are positive powers of two less than or equal to the number
of bits in the iteration counter: 1, 2, 4, 8, 16, and 32. Implementors select a
value of D as an explicit CPU-memory (or CPU-network bandwidth) tradeoff.

If a chain key CKj (for j in [1, D]) has an iteration count of M, it cannot be
used. This algorithm restores the chain keys to a usable state:

1.	 If j = 1, fail because the iteration count has reached its limit.

2.	 Derive CKj from CKj-1.

3.	 Ratchet CKj-1 once, recursing if necessary.

Moving from one iteration count to another never ratchets a single chain key
more than M times. Therefore, no ratcheting operation takes more than D×M
steps.

Signal uses different functions for ratcheting versus message key computa-
tion, since both come from the same chain key. In this notation {x} refers to
an array of bytes containing a single byte x.

MK = HmacSHA256(CKj(i), {1})

CKj(i+1) = HmacSHA256(CKj(i), {2})

Each dimension must use a different function. Keys are initialized as:

j = 1 : CK1(0) RNG(32)

j > 1 : CKj(0) HmacSHA256(CKj-1(0), {j+1})

16 WhatsApp Encryption Overview

JANUARY 24, 2023

And ratcheted as:

CKj(i) HmacSHA256(CKj(i-1), {j+1})

App State Syncing Security

Introduction

App State Syncing enables a consistent experience across devices, and is
end-to-end encrypted. Prior to supporting companion devices, the WhatsApp
client was the sole owner and the source of truth for all client settings and other
data, referred to as App State. With the introduction of companion devices,
App State is synchronized between all of the user’s devices securely, using
end-to-end encryption.

Example App State Syncing client settings and other data include the following:

• Chat properties, such as Muted, Pinned, Deleted

• Message properties, such as Deleted for Me, Starred

• Contact-related properties, such as contact names, broadcast list names

• Most recently used GIFs, stickers, emojis

App State does not include user messages’ content, nor keys that could be used
to decrypt messages, nor settings that might impact the secrecy of messages.

The synchronization of App State between a user’s devices requires storage of
end-to-end encrypted data on the WhatsApp server to facilitate the transmission
between the different devices for the user’s account. WhatsApp servers do not
have access to the keys that could be used to decrypt the App State data that
is stored.

A Collection is a representation of several use-cases that are grouped together.
For example, various Chat Properties (see above) can be modelled as a single
Collection. Collections are implemented as a dictionary (a set of Index-Value
pairs) and are fixed to specific client versions.

Initially, Collections are empty. To modify a Collection, a client device submits
a Mutation which either sets a new Value for a given Index (SET Mutation), or
removes the pair from the Collection (REMOVE Mutation).

A group of Mutations submitted together constitute a Patch, which atomically
changes the Collection from version N to version N + 1. The server maintains

17 WhatsApp Encryption Overview

JANUARY 24, 2023

an ordered queue of Patches (Patch Queue), which consists of all Patches
submitted in the last X days.

A server-side process, called a Base Roller, periodically builds a Snapshot which
represents the state of the Collection after applying all Patches up until and
including the Patch with version N. The first Snapshot is built from the entire
Patch Queue, while subsequent Snapshots are built by applying new Patches to
the previous Snapshot. A Snapshot can be used to initialize a newly registered
device or to optimize the data traffic by sending a Snapshot instead of the list
of Patches.

App State Syncing is designed to guarantee the secrecy and integrity of the
data being synchronized. The pairwise encrypted sessions (as outlined in the
Initiating Session Setup Section) are used for transferring secret keys between
different devices of the same account.

Terms

• Base Key - Input key material used to generate the keys used to encrypt
the data or provide its integrity.

• Index MAC Key - Key derived from the Base Key via HKDF and used to
compute the HMAC of the index.

• Value Encryption Key - Key derived from the Base Key via HKDF and
used to encrypt the combined Mutation index and value. The encryption is
done via AES-256 in CBC mode.

• Value MAC Key - Key derived from the Base Key via HKDF and used
to compute the HMAC of the combined Mutation index and value. Used on
the MAC stage of Encrypt-then-MAC approach to provide authenticated
encryption.

• Snapshot MAC Key - Key derived from the Base Key via HKDF and used
to provide anti-tampering for Snapshots generated by Base Roller.

• Patch MAC Key - Key derived from the Base Key via HKDF and used to
provide anti-tampering for Patches.

• KeyID - Unique identifier for the Base Key. Base Keys are rotated
periodically and when a device is removed from the account to provide
eventual future secrecy. An attacker in possession of a removed device and
access to the server can no longer decrypt the content of SET Mutations
submitted after the removal.

• Operation - Byte value which identifies a Mutation as SET or REMOVE.

Encryption of Mutations

In order for Base Roller to coalesce sequences of actions to the same index, it
needs the index submitted to the server to be deterministic. HMAC of the index

18 WhatsApp Encryption Overview

JANUARY 24, 2023

is used as an identifier of the index-value record the Mutations refers to. This
also makes sure that the indexes that the server sees have the same length and
prevent the server from guessing the record for which the Mutation is applied.

Values (together with indexes, as mentioned above) are encrypted using standard
authenticated encryption (described below) with random IVs.

Combined index and value plaintext are supplemented with arbitrary length
padding in order to enable some model of differential privacy on the type of
the records.

1.	 Generate the Index MAC Key, Value Encryption Key, Value
MAC Key, Snapshot MAC Key, and Patch MAC Key from Base Key
by means of HKDF.

2.	 Compute HMAC-SHA2-256 of the index.

3.	 Construct the plaintext by combining Index and Value with random padding
(used to obfuscate the size of the Mutation from the server).

4.	 Construct the associated data by concatenating Operation with KeyID.

5.	 Apply Encrypt-then-MAC approach with AES-256-CBC keyed by Value
Encryption Key and HMAC-SHA2-512 keyed by Value MAC Key.

6.	 MAC computed on Step 2, ciphertext computed on Step 5, together with
Operation and KeyID form an encrypted Mutation.

Anti-Tampering

The anti-tampering mechanisms described below are designed to prevent:

• Drop, reorder, or replay Mutation within a Patch

• Drop, reorder, or replay (including a construction of new Patches) Patches
within a Collection or even between the Collection

• Drop or replay Mutations within a Snapshot constructed by a Base Roller

Snapshot Integrity

The server periodically runs a Base Roller which compacts the Patch Queue
into a single Snapshot. Clients cannot predict when the Snapshot is going to be
built (at the extreme the Snapshots could be built on every Patch). Thus, clients
include an additional unforgeable checksum for each Patch in order to be able
to verify all possible Snapshots built by the server.

Our approach relies on a homomorphic hashing algorithm called LtHash. It has
the following two important properties:

• Set homomorphism: for any two disjoint sets S and T, LtHash(S) +
LtHash(T) = LtHash(S U T).

19 WhatsApp Encryption Overview

JANUARY 24, 2023

• Collision resistance: it is difficult (computationally infeasible) to find
two distinct sets S and T for which LtHash(S) = LtHash(T).

A 1024-bit variant called LtHash16 and HKDF as an extensible output
function (XOF) is used. For each Collection clients must maintain a 1024-bit
value of LtHash16 computed over the current Snapshot of the Collection.
The MAC computed over the content of plaintext index and value together
with authenticated data is used as input to the LtHash.

Upon receiving or constructing a new Patch, the set homomorphism property
of LtHash is used to compute the new 1024-bit value corresponding to the
new state (after applying the Patch in question):

• Assume that the current value of digest is CurrentLtHash, and Patch
P is being processed.

• Build a set R of MACs of previous states of all records that are affected
(deleted with REMOVE or overwritten with a SET operation).

• Build a set A of MACs of all SET records (in encrypted form) in the Patch P.

• Construct NewLtHash = LtHash16Add(LtHash16Subtract(Curr
entLtHash, R), A). See below on how these operations are defined.

LtHash16Add operation mentioned above is defined as follows:

LtHash16Add(H, A):
 R = H
 for Item in A:

R = LtHash16AddSingle(R, Item)
 return R

LtHash16AddSingle(H, I):
 X = HKDF(1024, “WhatsApp Patch Integrity”, I)
 return PointwiseAdd16(H, X)

where PointwiseAdd16 performs pointwise overflowing addition of two
1024-bit byte arrays interpreting them as arrays of 16-bit unsigned integers.
Operation LtHash16Subtract is defined similarly to LtHash16Add
replacing pointwise addition with pointwise subtraction.

Further, a MAC over the computed value of LtHash16 concatenated with
8 byte Patch version and the name of the Collection is computed:

SnapshotMAC = HMAC_SHA_256(
 SnapshotMACKey,
 LtHash ||
 TO_64_BIT_NETWORK_ORDER(PatchVersion) ||
 TO_UTF8(CollectionName)
)

20 WhatsApp Encryption Overview

JANUARY 24, 2023

Patch Queue Integrity

To prevent tampering with content of a Patch, clients must compute the
HMAC over the 32-byte MACs of each individual Mutation that is part of
the Patch together with the Patch version number and Collection Name:

where MutationMAC_i is the last 32 bytes of value ciphertext of Mutation
#i in the Patch, and PatchVersion is the version of the Patch about to
be submitted (i.e. latest known version of the Collection plus one). Note
that upon receiving a Patch, the client must verify it, including the expected
version of the Patch (which must match the server-assigned version).

Both values PatchMAC and SnapshotMAC are included in the Patch and
submitted to the server.

Verification

After downloading a Patch, clients must first verify its correctness by
recomputing the PatchMAC and comparing it with the value included with
the Patch. After that, clients verify that SnapshotMAC is correct as well by
repeating the steps outlined above.

The Base Roller process on the server must preserve SnapshotMAC (and
the KeyID used to generate it) of the latest Patch that was used to construct
the Base Rolled Snapshot. This value is used by a client that received a
Snapshot to independently verify its integrity by applying LtHash16 over all
of its records and further compute the MAC as described above.

Key Rotation

A Key Rotation involves a client randomly generating a new key tuple and
broadcasting it to all other devices. In the event of Key Rotation, all future
Mutations must not use any previous key version. To preserve the ability
of the server to coalesce the Mutations applied to a record when updating
across a key boundary, a client must submit a REMOVE Mutation with the
old key and a SET Mutation (if needed) with the new key.

PatchMAC = HMAC_SHA_256(
 PatchMACKey,
 SnapshotMAC ||
 MutationMAC_0 ||
 MutationMAC_1 ||
 .. ||
 MutationMAC_N ||
 TO_64_BIT_NETWORK_ORDER(PatchVersion) ||
 TO_UTF8(CollectionName)
)

21 WhatsApp Encryption Overview

JANUARY 24, 2023

It is notable that a simultaneous REMOVE and SET occurring as the key
version increases will be relatively easy for the server to correlate as equating
to an update of the record. In collusion with anyone with access to the old
key, WhatsApp would therefore be able to determine with high confidence
the value of the new index; and might be able to assume that this means
it has been updated.

The following two mechanisms are used to combat this:

1.	 Post-Rotation Update Obfuscation - When submitting a Mutation to the
server, clients will use this opportunity to rotate some other number of
records, ensuring that WhatsApp cannot determine which of the old
indexes was being updated, and cannot directly map any of the old
records to which new record represents them.

2.	 Asynchronous Key Catch-Up - Ensures that after a Key Rotation, there
will be at some point in the future when no current records are encrypted
with the preceding key(s). This means that on some cadence, clients
will issue a series of SET and REMOVE to re-encrypt old records under a
new key version, without updating the actual plaintext values. Catch-Up
updates are indistinguishable from a logical UPDATE operation, so that
the server in collusion with a removed device can never determine when
an old record is being updated.

The key must be rotated whenever a device is being unregistered. Additionally,
clients rotate the key periodically (for example once a month).

Each device maintains a list of the encryption keys together with additional
data:

1.	 KeyData - Actual base key bytes

2.	 KeyID - ID of the key

3.	 Fingerprint - Data structure which identifies a list of devices existing
at the moment when the key was generated (and thus was shared with)

4.	 Timestamp - Time when the key was created

The KeyID is composite and consists of 4 byte Epoch and 2 byte DeviceID.
Epoch is selected randomly between 1 and 65536 by the primary devices
during the registration of the first companion device, and after that increases
by 1 every time a device rotates a key. The DeviceID component of the
KeyID is used to resolve races between several devices rotating the key at
the same time, so that all keys will receive unique IDs. To settle on a single
key after such an event, clients prefer the key with the smallest DeviceID
component when Epoch components are equal. Otherwise, always prefer
the KeyID with the largest Epoch. Additionally, one (or in rare cases several)
encryption keys can be active at any given time.

Key Rotation must happen under the following conditions:

• If a client detects that a previously known device was removed, it must
locally mark all active encryption keys as expired.

22 WhatsApp Encryption Overview

JANUARY 24, 2023

• Upon receiving an AppStateSyncKeyShare message mark all keys
with smaller Epoch as expired.

• Upon receiving a Mutation in any Collection mark all keys with a smaller
Epoch as expired.

• When a client wants to submit a new Patch to the server it first must
check the list of known keys. If there is one that is still active it uses it.
Otherwise, it performs the Key Rotation. To rotate the key:

1.	 Generate a new KeyID by concatenating DeviceID with an incre-
mented Epoch (maximum value among all known encryption keys).

2.	 Generate new key material from CSPRNG.

3.	 Generate a new Fingerprint from the current registration data.

4.	 Persist the key information and send it to all other devices using
the corresponding pairwise encrypted sessions.

5.	 Use the key to encrypt the Mutations and submit them to the server.

• In some cases, clients cannot determine whether a key is still valid
based on event ordering alone. To compute whether the last known
active key is valid or not, clients compare the key’s Fingerprint with
the current device registration data.

If a device receives a Mutation from the server and the KeyID is not known,
a device can request to resend the encryption keys from other devices.

To guarantee that encryption keys are not shared with untrusted devices,
all client applications only send them via authenticated pairwise encrypted
sessions:

1.	 While performing Key Rotation, a device must send the new key to all
other devices which are known to be authorized by the primary.

2.	 When a device receives a new key from a device which is not authorized
by the primary this key is ignored.

To make sure that other devices will not inadvertently use an encryption
key that should be expired on device removal, the device that performs the
removal (the companion device itself or primary device) submits a Patch into
all Collections marking all the current keys as expired. This Patch informs
other devices that encryption keys with epoch less or equal to the provided
epoch should not be used going forward.

23 WhatsApp Encryption Overview

JANUARY 24, 2023

Verifying Keys
WhatsApp users additionally have the option to verify the keys of their
devices and the devices of the users with which they are communicating
in end-to-end encrypted chats, so that they are able to confirm that an
unauthorized third party (or WhatsApp) has not initiated a man-in-the-middle
attack. Verification can be done by scanning the QR code or by comparing
the 60-digit number between two primary devices. WhatsApp users can also
verify individual companion devices manually by using a primary device to
check the same QR code or 60-digit number.

The QR code contains:

1.	 A version.

2.	 The user identifier for both parties.

3.	 The full 32-byte public Identity Key for all devices of both parties.

When either device scans the other’s QR code, the keys are compared to
ensure that what is in the QR code matches the Identity Key as retrieved
from the server.

The 60-digit number is computed by concatenating the two 30-digit numeric
fingerprints for each user’s device Identity Keys. To calculate a 30-digit
numeric fingerprint:

1.	 Lexicographically sort public Identity Keys for all of the user’s devices
and concatenate them.

2.	 Iteratively SHA-512 hash the sorted Identity Keys and user identi-
fier 5200 times.

3.	 Take the first 30 bytes of the final hash output.

4.	 Split the 30-byte result into six 5-byte chunks.

5.	 Convert each 5-byte chunk into 5 digits by interpreting each 5-byte
chunk as a big-endian unsigned integer and reducing it modulo 100000.

6.	 Concatenate the six groups of five digits into thirty digits.

Companion Device Removal
Companion devices can log themselves out from a WhatsApp account, may
be logged out by the user’s primary device, or may be logged out by the
WhatsApp server. When a primary device logs out or detects the log out of
one or more of its companion devices, while one or more companions remain
linked, it generates and uploads new Signed Device List Data removing the
previously authorized device.

24 WhatsApp Encryption Overview

JANUARY 24, 2023

To update the signed device list:

7.	 The primary detects a device removal and loads its own Identity
Key as Iprimary.

8.	 The primary generates updated Device List Data containing the
currently linked devices, as ListData.

9.	 The primary generates a Device List Signature for the updated
Device List Data, ListSignature = CURVE25519_
SIGN(Iprimary, 0x0602 || ListData).

10.	 The primary sends ListData and ListSignature to WhatsApp
server. See “Transport Security” for information about the secure
connection between WhatsApp clients and servers.

Even if no device removal has been detected, while one or more companions
remain linked, primary devices will periodically upload updated Signed
Device List Data following the above steps to produce a signature with an
updated timestamp.

Signed Device List Expiry

In end-to-end encrypted chats, Signed Device Lists are expired with a Time
to Live of 35 days or less. Clients will only send and receive messages and
calls with the primary device of an account with an expired Signed Device
List . Once an updated Signed Device List is received with a more recent
timestamp, senders will once again communicate with a user’s linked
companion devices.

On receipt of In Chat Device Consistency Data with an updated timestamp
for the sender’s device list, receiving devices reduce the TTL of the sender’s
current device list to 48 hours or less from receipt of the message. In order
to maintain message reliability the reduced TTL will not be enforced until
the receiving client comes online after the 48 hour window.

Companion Device Compromise

The Time to Live of Device List Signatures, and In Chat Device Consistency
revoke the associated signed device lists after 35 days and 48 hours
respectively. If a companion device’s private keys become compromised
the compromised device should no longer be used, and removed from the
account. Devices are revoked automatically after their removal to limit
the potential for a third party who compromised the device colluding with
WhatsApp to continue to send and receive messages from the previously
linked account. The primary device’s identity key pair can be re-generated
by deleting and reinstalling WhatsApp on your primary device to revoke all
devices immediately.

25 WhatsApp Encryption Overview

JANUARY 24, 2023

Transport Security
Communication between WhatsApp clients and WhatsApp chat servers
is layered within a separate encrypted channel using Noise Pipes with
Curve25519, AES-GCM, and SHA256 from the Noise Protocol Framework
for long running interactive connections.

This provides clients with a few nice properties:

1.	 Extremely fast lightweight connection setup and resume.

2.	 Encrypts metadata to hide it from unauthorized network observers. No
information about the connecting user’s identity is revealed.

3.	 No client authentication secrets are stored on the server. Clients
authenticate themselves using a Curve25519 key pair, so the server
only stores a client’s public authentication key. If the server’s user
database is ever compromised, no private authentication credentials
will be revealed.

Note: In cases where a business user delegates operation of their Business
API client to a vendor, that vendor will have access to their private keys -
including if that vendor is Facebook. However, these private keys will still
not be stored on the WhatsApp chat server. See below for details.

Defining End-to-End Encryption
WhatsApp defines end-to-end encryption as communications that remain
encrypted from a device controlled by the sender to one controlled by the
recipient, where no third parties, not even WhatsApp or our parent company
Facebook, can access the content in between. A third party in this context
means any organization that is not the sender or recipient user directly
participating in the conversation.

26 WhatsApp Encryption Overview

JANUARY 24, 2023

Implementation on WhatsApp
Services
This is straightforward when it comes to two people communicating on
their phones or computers using WhatsApp Messenger or the WhatsApp
Business App: each person’s WhatsApp endpoint is running on a device
they control.

Some organizations may use the WhatsApp Business API, an application
that can be deployed as a WhatsApp endpoint on a server. The Business API
allows those organizations to programmatically send and receive messages.

WhatsApp considers communications with Business API users who manage
the API endpoint on servers they control to be end-to-end encrypted since
there is no third-party access to content between endpoints.

Some organizations may choose to delegate management of their WhatsApp
Business API endpoint to a vendor. In these instances, communication still
uses the same Signal protocol encryption and clients on or after version
v2.31 are configured to generate private keys within the vendor-controlled API
endpoint. However, because the WhatsApp Business API user has chosen
a third party to manage their endpoint, WhatsApp does not consider these
messages end-to-end encrypted.

27 WhatsApp Encryption Overview

JANUARY 24, 2023

In 2021, organizations who use the Business API will be able to designate
WhatsApp’s parent company, Facebook, as the vendor that operates the
Business API endpoint on their behalf. Since such messages are not delivered
directly to an endpoint controlled by the organization, WhatsApp does not
consider chats with organizations who choose to use Facebook to operate
their API endpoint to be end-to-end encrypted.

Encryption Has No Off Switch
All chats use the same Signal protocol outlined in this whitepaper, regardless
of their end-to-end encryption status. The WhatsApp server has no access
to the client’s private keys, though if a business user delegates operation of
their Business API client to a vendor, that vendor will have access to their
private keys - including if that vendor is Facebook.

When chatting with an organization that uses the Business API, WhatsApp
determines the end-to-end encryption status based only on the organization’s
choice of who operates its endpoint.

The encryption status of an end-to-end encrypted chat cannot change
without the change being visible to the user.

Displaying End-to-End Encryption
Status
Across all our services, WhatsApp makes the end-to-end encryption status
of a chat clear. If the user’s phone sees that it’s communicating with an
API endpoint that delegates operation of its API to a vendor, the phone will
display this to the user. The user can also double check the encryption status
within the chat or in the business info section of their app.

These changes will take effect in all WhatsApp versions after January 2021.

28 WhatsApp Encryption Overview

JANUARY 24, 2023

Conclusion
All WhatsApp messages are sent with the same Signal protocol outlined
above. WhatsApp considers all messages, voice calls, and video calls sent
between all devices controlled by a sender user and all devices controlled
by a recipient user to be end-to-end encrypted. WhatsApp message history
syncing and app state syncing are also protected by end-to-end encryption.
Communications with a recipient who elects to use a vendor to manage
their API endpoint are not considered end-to-end encrypted. If this occurs,
WhatsApp makes it clear to users within the chat.

The Signal Protocol library used by WhatsApp is based on the Open Source
library, available here:

http://github.com/whispersystems/libsignal-protocol-java/

29 WhatsApp Encryption Overview

JANUARY 24, 2023

