
Управляющее резюме

3Мотивация

14

Список проблем

Структура программы

аудит смарт-контрактов Solidity, разработанных в рамках децентрализованной биржи токенов

(ДЭКС). Документ предназначен для использования авторами договоров по их собственному желанию для публичного или

1

В ходе аудита серьезных уязвимостей в экосистеме смарт-контрактов Broxus не выявлено.

Управляющее резюме

7

Заключение

Источник данных

10

В ходе этого проекта, согласно замыслу авторов проекта, мы выполнили

1

4

Объяснение

были найдены. Несколько незначительных проблем, которые не ставят под угрозу экосистему смарт-контрактов Broxus

7

5

Квадратный корень и решение уравнений

частные цели.

но по-прежнему требуют улучшения, перечислены в этом документе в следующих разделах.

3

Структура контрактов с интерфейсами и последовательностью развертывания

Анализ контрактов Broxus TON-DEX
Подготовлено Прувендо

2021/10/26

Machine Translated by Google

Machine Translated by Google

Источник данных

https://github.com/broxus/ton-dex/tree/master/
contracts Хэш фиксации 02943f5f05d280be795427f1adf01ab5f466616e сделан 11.08.2021.

Мотивация

3. №23 FreeTon DEX, этап 2 внедрения a. 9 мая - 18 июня
2021 г., 23:59 UTC b. 4 сдачи с положительной
оценкой c. Победитель (8,12 балла) на

https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents
%2Fapplication%2Fpdf%2Fr5arcsbzehkm9nixl7-FreeDEX%20contest%20_%20
SVOI%20submission%20_%20TonSwap.pdf?alt = медиа и токен = 4f1984d3-1c02-4 c06-8c42-
bd5d983af090

Однако на момент подачи этого документа было сделано два новых коммита.

а. Продолжительность: 27 января - 20 марта 2021 г., 23:59 UTC b.
7 сабмитов с положительной оценкой c. Победитель (8,45 балла):
в

3

https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents
%2Fapplication%2Fpdf%2Fin0jwkdweijkhjr6xdb-Orderbook%20Dex%20Design% 20and
%20Architecture.pdf?alt=media&token=84824133- 7817-49ca-abd7-a4122 ee8a900 2. Конкурс №16 по
внедрению FreeTon DEX, этап 1

https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents
%2Fapplication%2Fpdf%2Fjqyuwqjmvqgkq2ky5ej-II%20FreeDEX%20contest%2
0_%20SVOI%20submission%20_%20TonSwap.pdf ?alt=media&token=d64e7847 -24eb-4022-
a722-99108c3751e5 4. #38 Внедрение FreeTON DEX: Этап 3

Исходный код смарт-контрактов доступен на Github по адресу:

Создание экосистемы DEX — одна из важных целей сети Free TON. Здесь мы предоставляем список публичных
мероприятий, организованных в виде конкурсов субуправления DeFi (https://defi.gov.freeton.org) . : 1. #6
Архитектура и дизайн FreeTon DEX a. Продолжительность: 28 октября - 15 ноября 2020 г., 23:59 UTC b. 10

положительно оцененных представлений c. Победитель (7,66 балла): «Книга заказов Dex Design and
Architecture» на

Machine Translated by Google

https://github.com/broxus/ton-dex/tree/master/contracts
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fr5arcsbzehkm9nixl7-FreeDEX%20contest%20_%20SVOI%20submission%20_%20TonSwap.pdf?alt=media&token=4f1984d3-1c02-4c06-8c42-bd5d983af090
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fr5arcsbzehkm9nixl7-FreeDEX%20contest%20_%20SVOI%20submission%20_%20TonSwap.pdf?alt=media&token=4f1984d3-1c02-4c06-8c42-bd5d983af090
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fr5arcsbzehkm9nixl7-FreeDEX%20contest%20_%20SVOI%20submission%20_%20TonSwap.pdf?alt=media&token=4f1984d3-1c02-4c06-8c42-bd5d983af090
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fr5arcsbzehkm9nixl7-FreeDEX%20contest%20_%20SVOI%20submission%20_%20TonSwap.pdf?alt=media&token=4f1984d3-1c02-4c06-8c42-bd5d983af090
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fin0jwkdweijkhjr6xdb-Orderbook%20Dex%20Design%20and%20Architecture.pdf?alt=media&token=84824133-7817-49ca-abd7-a4122ee8a900
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fin0jwkdweijkhjr6xdb-Orderbook%20Dex%20Design%20and%20Architecture.pdf?alt=media&token=84824133-7817-49ca-abd7-a4122ee8a900
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fin0jwkdweijkhjr6xdb-Orderbook%20Dex%20Design%20and%20Architecture.pdf?alt=media&token=84824133-7817-49ca-abd7-a4122ee8a900
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fin0jwkdweijkhjr6xdb-Orderbook%20Dex%20Design%20and%20Architecture.pdf?alt=media&token=84824133-7817-49ca-abd7-a4122ee8a900
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fjqyuwqjmvqgkq2ky5ej-II%20FreeDEX%20contest%20_%20SVOI%20submission%20_%20TonSwap.pdf?alt=media&token=d64e7847-24eb-4022-a722-99108c3751e5
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fjqyuwqjmvqgkq2ky5ej-II%20FreeDEX%20contest%20_%20SVOI%20submission%20_%20TonSwap.pdf?alt=media&token=d64e7847-24eb-4022-a722-99108c3751e5
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fjqyuwqjmvqgkq2ky5ej-II%20FreeDEX%20contest%20_%20SVOI%20submission%20_%20TonSwap.pdf?alt=media&token=d64e7847-24eb-4022-a722-99108c3751e5
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fjqyuwqjmvqgkq2ky5ej-II%20FreeDEX%20contest%20_%20SVOI%20submission%20_%20TonSwap.pdf?alt=media&token=d64e7847-24eb-4022-a722-99108c3751e5
https://defi.gov.freeton.org

-свободная тонна/ (на русском)

- https://twitter.com/broxus

4

- https://broxus.medium.com/ - https://
broxus.com/ - https://hub.forklog.com/
broxus-zapustila-ton-swap-2-0-chto-novogo-v-dex-na-blokchejne

а. 4 августа - 27 сентября 2021 г., 23:59 UTC b. 5
представлений c. Идет голосование

Этот раздел содержит описание иерархии контрактов, график вызовов (см. отдельный файл) одной из важных
траекторий вызовов (развертывание токена поставщика ликвидности).

на-проекте-представил-вторую-версию/3064450753801402/

Контракты Broxus являются частью этой деятельности и имеют самую зрелую систему, уже работающую
в производстве, см. информацию в Интернете:

- https://www.facebook.com/4BitcoinAddicts/posts/broxus-a-leading-developer-of-the-freet

Поскольку основной целью бирж является манипулирование пользовательскими токенами, анализ
таких контрактов требует расследования, чтобы снизить риск сбоя и предотвратить возможные атаки.

Структура программы

Machine Translated by Google

https://hub.forklog.com/broxus-zapustila-ton-swap-2-0-chto-novogo-v-dex-na-blokchejne-free-ton/
https://twitter.com/broxus
https://broxus.medium.com/
https://broxus.com/
https://hub.forklog.com/broxus-zapustila-ton-swap-2-0-chto-novogo-v-dex-na-blokchejne-free-ton/
https://www.facebook.com/4BitcoinAddicts/posts/broxus-a-leading-developer-of-the-freeton-project-has-unveiled-the-second-versio/3064450753801402/
https://www.facebook.com/4BitcoinAddicts/posts/broxus-a-leading-developer-of-the-freeton-project-has-unveiled-the-second-versio/3064450753801402/

Структура контрактов с интерфейсами и последовательностью развертывания

5

Machine Translated by Google

6

Траектория развертывания токена LP DexPair -> …-> DexPair (с обратными вызовами)

Machine Translated by Google

1

7

2. Использование флага IGNORE_ERRORS при отправке сообщения снижает строгость условий контракта. Если

предполагается, что могут возникать ошибки, мы предлагаем предотвратить их, используя

соответствующие запросы.

Большинство функций хорошо читаются, имена переменных говорят сами за себя, логику контракта можно
извлечь из его кода при наличии общих знаний языка программирования Solidity и предмета области
использования контракта.

1. Поскольку ответственность является относительно новой функцией, ее использование для геттеров

обычно не рекомендуется, и некоторые члены сообщества предлагают использовать обратные вызовы.

5. buildPairParams, buildInitParams, buildAccountParams в каждом контракте содержат много дублированного

кода (на самом деле они буквально идентичны). Мы предлагаем использовать отдельную библиотеку
или общего предка

Общий:

Контракты были проанализированы с точки зрения логических ошибок, тогда как каждая функция была
проанализирована с точки зрения удобочитаемости, адекватных имен переменных и функциональной
инкапсуляции. Также был проведен поиск дублирующегося кода для предотвращения нарушения принципа DRY. В некоторых случаях при реализации того или иного
алгоритма для осознания соответствия конечного алгоритма и потенциальной цели использовался здравый
смысл. Однако, когда здравый смысл противоречит коду контракта, мы не можем гарантировать, что это ошибка,
мы отмечаем это место, чтобы привлечь больше внимания разработчиков.

3. Предложите использовать побитовые операторы типа || для настроек флаги вместо арифметического
сложения 4. Предложить не использовать флаг 2 в tvm.rawReserve, это снижает детерминированность

поведения контракта, так как резервирует минимум от баланса и заданного аргумента, и например в
случае, когда мы резервируем весь баланс weCopy of Аудит контракта Broxus DEXКопия аудита контракта
Broxus DEXё недостаточно средств для выполнения функции

а. (tvm.hash(_buildInitData(

Мы также следуем следующему принципу: лучше обратить внимание на несуществующее, чем пропустить что-то
важное. Только автор договора может судить о реальной серьезности обнаруженных проблем.

1 https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Список проблем

Объяснение

Machine Translated by Google

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

11. requestUpgradeAccount: не генерирует события, однако аналогичные функции (forceUpgradeAccount,

upgradePair) делают DexAccount:

17. конструктор: слишком публичная функция, потенциально может привести ко множеству подобных
хранилищ DexPair:

} немного избыточный код

18. exchange: слишком дублированный код в ветках, предложите рефакторинг 19.

setFeeParams (onlyRoot): root на самом деле не вызывает эту функцию

12. getWalletData: предложить использовать необязательный тип для

возврата 13. addPair: генерируемое событие соответствует начальному порядку валют (левый и правый корни), а

не порядку, в котором они хранятся (который сортируется по адресу) 14. ожидаемыйWalletAddressCallback

принимает сообщение value и не возвращает его обратно в случае ошибки (или отправляет на send_gas_to)

обновление, не позволяя пользователю выбирать и приводит к потере данных
10. setVaultOnce: не проверять, что new_vault не равно нулю

ДексВалт:

6. deployAccount: при развертывании учетной записи не учитывается адрес отправителя, а только данные,

передаваемые в качестве аргументов. Предложите сделать больше проверок здесь.

PlatformTypes.Account,

_buildAccountParams(account_owner)))) - предлагаю производить

расчет адресов в отдельной функции, т.к. она имеет дубликаты DexRoot:

«+=» будет работать в обоих случаях

7. deployAccount: улучшить проверку достаточного баланса (только V1) 8. install*:

предложить проверить, достаточно ли баланса 9. Функция forceUpgradeAccount

слишком жесткая и позволяет владельцу root выполнять

16. DexAccount.depositLiquidity:

,

15. tokensReceivedCallback: if(_balances.exists(token_root)) { _balances[token_root] += tokens_amount; } else

{ _balances[token_root] = tokens_amount;

8

выдать DepositLiquidity(left_root, left_amount, right_root, right_amount, auto_change);
DexPair.depositLiquidity: выдать DepositLiquidity(left_amount, right_amount,
lp_tokens_amount); События с одинаковыми именами и разными аргументами

Machine Translated by Google

require((left_amount > 0 && right_amount > 0) || ((lp_supply != 0)&&(auto_change && (left_amount + right_amount

> 0)), Error);

24. конструктор: предлагается использовать строгое назначение pending_messages = 2, а не += для

из

TokenFactoryStorage(msg.sender).prune обратные вызовы (onStoragePruneNotify,

Однако это уменьшает количество
ошибок 23. DepositLiquidity: Требование lp_supply != 0 кажется технически разумным, но предлагает

использовать более экономически обоснованные значения в качестве нижней границы (на самом
деле мы не видим здесь хорошего решения, поэтому мы можем рассмотреть это в будущее эволюции контрактов)

21. tokensReceivedCallback: использует небольшие значения TON 10, 30, 44 (нанотон) для определения
поведения. Предложите использовать более понятный способ. 22. DepositLiquidity: require(lp_supply !

= 0 || (left_amount > 0 && right_amount > 0), DexErrors.WRONG_LIQUIDITY); require((left_amount > 0 &&

right_amount > 0) || (auto_change && (left_amount + right_amount > 0)), DexErrors.AMOUNT_TOO_LOW);

TokenFactory: 26.

onStorageReadWithDetails:

может быть реорганизован в

Применение

20. afterInitialize: если DexPair не полностью развернут в случае неудачного развертывания токена Lp,
единственный способ заставить его работать — это вызывать deployPair снова и снова, что нелогично,
поскольку сама пара фактически развернута (но Lp жетон).

а. предложить также проверки: знаменатель > 0, числитель <= знаменатель (?)

дать больше гарантий присваиванию ценности a.
deploy_value не используется

а. Если что-то случится с Pair (повреждение по неизвестной причине), можно повторно развернуть
ту же рабочую пару с помощью вызова upgrade, а после этого вызвать deployPair для
инициализации корня Lp, если он равен нулю (это тоже немного сбивает с толку, однако это
не ошибка)

25. Переменные для создания символа LP могут быть константами, а не переменными:

Ожидание DexVaultLpToken:

9

строка LP_TOKEN_SYMBOL_PREFIX = "TONSWAP-LP-"; строка

LP_TOKEN_SYMBOL_SEPARATOR = "-"; uint8 LP_TOKEN_DECIMALS

= 9;

Machine Translated by Google

onStoragePruneReturn) кажутся избыточными, обратный вызов getData (onStorageReadWithDetails)
содержит все необходимые параметры для определения правильной ветки в функции, и
требования совпадают. Предложить рефакторинг

Начнем с квадратного корня.

10

Это обычно называют методом Ньютона (а также методом Герона). Известно, что сходимость
ньютоновских методов сильно зависит от начального приближения. Чем меньше разница между
реальным квадратным корнем и начальным значением, тем быстрее сходится метод. В контракте
используется начальное значение (x + 1)/2. Однако можно найти и более близкий к настоящему
корневому вариант.

Квадратный корень и решение уравнений

}

в то время как (г < у)

если (х == 0) вернуть 0;

вернуть у;

uint256 у = х;

Используемый метод - это вавилонский метод нахождения квадратного корня, адаптированный для
целочисленных аргументов. Алгоритм следующий: функция _sqrt(uint256 x) private pure возвращает
(uint256) {

у = г;

uint256 z = (х + 1) / 2;

}

г = (х / г + г) / 2;

{

иначе если (x <= 3) вернуть 1;

Machine Translated by Google

3513

1. 6172839 4096

7. 96492

3513

15. 3513

функция, которая делает то же самое. Также возможно найти это значение с помощью процедуры дихотомии

16. 3513

11

3. 1543211 3513

8. 48309

3513

Мы видим, что если использовать половину аргумента (первый столбец), сходимость достигается на

3513

означает, что функция пола возвращает наибольшее целое число, меньшее аргумента. Значение

3513

9. 24282

Чтобы мотивировать результаты, давайте использовать 2 ̂ [log2 X/2] в качестве начального значения.

3513

10. 12395

3513

(23+1)/2->12->2^12 = 4096

3513

который возвращает это значение. Однако мы знаем, что в какой-то момент стандартной библиотеки не существует.

11. 6695

3513

2. 3086420 3555

3513

12. 4269

3513

используя правый битовый сдвиг со сложностью O (log (log (X))).

3513

13. 3580

16-й шаг, а если начать с 2^(([log2 (X)]+1)/2), то же самое достигается на 4-м. [х] здесь

4. 771609

[log2 (X)]+1 — это просто количество двоичных цифр в числе. В ТВМ есть инструкция

5. 385812

3513

14. 3514

х = 12345678 23,5575027 = log2 ->

6. 192921

Machine Translated by Google

18. 47095114969

2. 3 086 419 728 086 400

11. 6 028 163 532 100

20. 11774106420

27. 132897475

111111112

29. 111125233

111111110

4. 771 604 932 021 604

13. 1 507 040 885 584

22. 2944837192

31. 111111110

12

24. 741443729

log2= 53,45485569
134217728

6. 192 901 233 005 421

15. 376 760 231 635

8. 48 225 308 251 434

17. 94190098868

Чтобы мотивировать больше, мы берем большее число, чтобы продемонстрировать конвергенцию.

1. 6 172 839 456 172 800

10. 12 056 327 063 177

26. 205808791

111128599

19. 23547688556

28. 112896869

3. 1 543 209 864 043 200

12. 3 014 081 767 073

21. 5887577482

30. 111111111

111111110

В первом случае алгоритм сходится на 32-м шаге, а вариант на базе log2 — на 6-м. Поэтому мы
предлагаем улучшить начальное приближение, чтобы значительно ускорить сходимость.

14. 753 520 446 887

23. 1474514752

32. 111111110

5. 385 802 466 010 810

113100101

16. 188 380 132 201

25. 379047296

х = 12 345 678 912 345 600

7. 96 450 616 502 742

9. 24 112 654 125 844

Machine Translated by Google

4. В любом случае значение uint128((p/2) - Dsqrt) не является осмысленным значением (второй корень

13

1. uint256 D = math.muldiv(p, p, 4) + q; as (p:uint256) p^4+q может переполнять uint256 размера 2. Поскольку (D:uint256)

sqrt(D) должен соответствовать uint128 размера 3. если sqrt работает правильно, Dsqrt > (p/2) всегда вторая ветвь не

должно существовать

присваивать возвращаемому значению что угодно, кроме 0.

равно -(p/2) + Dsqrt, что отрицательно) 5.

Функция _sqrt может возвращать значение uint128 вместо uint256.

Решение квадратного уравнения

а. Если он есть, то это намекает на некорректно работающий sqrt, и нет никаких причин для

возвращает (uint128) {

} иначе {

uint256 D = math.muldiv(p, p, 4) + q;

вернуть uint128((p/2) - Dsqrt);

uint256 Dsqrt = _sqrt(D);

}

если (Dsqrt > (p/2)) {

функция _solveQuadraticEquationPQ (uint256 p, uint256 q) частная чистая

}

вернуть uint128 (Dsqrt - (p/2));

Machine Translated by Google

Заключение

200+) и сложно реализовать во время код-ревью.

На данный момент мы не обнаружили серьезных уязвимостей, которые могли бы поставить под угрозу средства

клиента, задействованные при работе с Broxus. Система кажется надежной, пригодной для использования в экосистеме

Free TON и основана на широко известном Uniswap AMM.

Все найденные проблемы обсуждались с авторами во время звонков в Zoom и в Telegram-канале.

Наконец, мы предполагаем, что соответствующий обходной путь желателен, и мы можем рекомендовать контракты

для использования в производстве со следующей оговоркой:

Плюсы: 1. Контракты хорошо структурированы 2.

Названия переменных в большинстве случаев говорят сами за себя

3. События отправляются, и они удовлетворительны 4. Все функции

тщательно проверяют баланс перед переводами и резервируют минимальный баланс контракта для

предотвращение недополнения 5. Все функции корректно проверяют права доступа 6. Почти все константы

именованы и говорят сами за себя (есть специальная библиотека с константами)

Некоторое поведение контракта (возможно, не полное) настоятельно рекомендуется пройти формальную

проверку, особенно: - функции с математическими вычислениями; - длинные контракты (более 6-ти подряд)
цепочка вызовов (в т.ч. обратные вызовы); - процедура развертывания и эффекты обновления кода.

2. Взаимодействие контрактов с обратными вызовами иногда занимает достаточно много времени (см. траекторию

развертывания токена Lp с 19 функциями подряд)

14

7. Геттеры готовы выполнить взаимодействие по контракту 8.

Мы считаем, что нет необходимости перепроектировать архитектуру

9. Мы не обнаружили ни одной проблемы, которую мы могли бы решить как критическую или основную

3. Возникает повторяющийся

код 4. Некоторые проблемы обнаружены и описаны на предыдущих страницах

Минусы: 1. Некоторые функции достаточно длинные (например, tokensReceivedCallback 437 LOC и некоторые

Machine Translated by Google

