Blockchain Privacy and Regulatory Compliance:
Towards a Practical Equilibrium

Vitalik Buterin, Jacob Illum, Matthias Nadler, Fabian Schiar and Ameen Soleimani

Abstract—In this paper we study Privacy Pools, a novel
smart contract-based privacy-enhancing protocol. We discuss
the pros and cons of this protocol, and show how it could be
employed to create a separating equilibrium between honest
and dishonest users. The core idea of the proposal is to allow
users to publish a zero-knowledge proof, demonstrating that their
funds (do not) originate from known (un-)lawful sources, without
publicly revealing their entire transaction transaction graph. This
is achieved by proving membership in custom association sets
that satisfy certain properties, required by regulation or social
consensus. The proposal may be a first step towards a future
where people could prove regulatory compliance without having
to reveal their entire transaction history.

Index Terms—Blockchain, Privacy, Regulation, Smart Con-
tracts, Zero-Knowledge Proofs.

I. INTRODUCTION

Public blockchains are transparent by design. The basic idea
is that anyone should have the option to validate transactions
without having to rely on centralized third parties. This reduces
dependencies and may provide a neutral foundation for various
applications, including, but not limited to, finance and self-
sovereign identities.

However, the existence of a public dataset which contains
each transaction of every blockchain address is problematic
from a privacy point of view. Whenever someone transfers an
asset to another address, and/or interacts with a smart contract,
the transaction will be forever visible on the blockchain.

Consider the following example: Alice goes to a restaurant
and uses her blockchain wallet to pay for dinner. The recipient
now knows Alice’s address and can analyze all past and
future activity of that address. Similarly, Alice now knows the
wallet address of the restaurant and could use this information
to obtain the wallet addresses of other guests or look into
the revenue of the restaurant. Third parties who know the
restaurant’s wallet address, and have the information that Alice
is dining there (e.g. from social media) can easily derive
Alice’s address and study her past and future transactions as
well.

Although the restaurant example might be considered a hy-
pothetical scenario, the fundamental concept applies to every
transaction conducted on a public blockchain. Each action
performed on a public blockchain is publicly recorded and
can be accessed by anyone, enabling third parties to analyze
users’ financial transactions and behavioral patterns.

These issues have led to the rise of privacy-enhancing
protocols. They allow users to deposit funds into the protocol
using one address and to withdraw them from the protocol at
a later point in time, using another address. All deposits and
withdrawals are still visible on the blockchain, but the link
between a specific deposit and its withdrawal counterpart is
no longer public.

One of the best-known privacy-enhancing protocols is Tor-
nado Cash. It succeeded in solving the above-mentioned
issues, allowing users to retain some privacy. However, besides
legitimate users trying to protect their data, Tornado Cash has
also been used by various bad actors. Deposit data suggests
that hacker groups have moved funds from illicit sources
through the protocol. Evidence that the privacy-enhancing
protocol has also been used by a North Korean hacker group
eventually lead to the placement of the protocol’s smart con-
tract addresses on the list of Specially Designated Nationals
And Blocked Persons (commonly know as the SDN list)
maintained by the Office of Foreign Assets Control (OFAC)
in the United States.

The critical issue with Tornado Cash was essentially that
legitimate users had limited options to dissociate from the
criminal activity the protocol attracted. Tornado Cash provides
a compliance feature that allows a user to create a proof
of which deposit a given withdrawal came from. While this
mechanism does allow people to prove their innocence, it
comes at the cost of having to trust a centralized intermediary
and creates information asymmetries [1]. Consequently, the
mechanism saw little use.

This paper discusses an extension to this approach that
enables users to publicly prove an informative, but still broad,
claim about which deposits their withdrawal could have come
from. It allows for membership proofs (“1 prove that my
withdrawal comes from one of these deposits™) or exclusion
proofs (“1 prove that my withdrawal does not come from one
of these deposits”). The general concept has been proposed by
Privacy Pools [2]]. The present paper discusses this proposal
and explains how its building blocks can be used to reach a
separating equilibrium between honest and dishonest protocol
users.

Note, that Privacy Pools gives additional options by extend-
ing the users’ action set. They can still provide more detailed
proofs to specific counterparties, if needed. However, there
will be cases when a membership or exclusion proof might
be sufficient. Moreover, the option to publish these proofs

publicly does have many advantages over bilateral disclosure.

The paper is structured as follows. After this short intro-
duction, we give a technical background on zero-knowledge
proofs and Privacy Pools. In Section we discuss how
association sets are used and constructed. In Section [V] we
elaborate on further technical details and special cases. In
Section [V] we discuss our findings and turn to practical
considerations. Finally, in Section we conclude.

II. TECHNICAL BACKGROUND

In this section we provide a short technical overview, and
discuss the technical building blocks and general principles of
Privacy Pools-like protocols.

A. Blockchain privacy before ZK-SNARKs

Historically, blockchain proponents have argued that
blockchains can preserve privacy despite all transactions being
transparent, because they offer pseudonymity: you do not
need to reveal any information about your offline identity to
use a blockchain. Instead, users are identified by numerical
“addresses”.

Satoshi’s Bitcoin white paper makes this exact claim, ar-
guing that “privacy can still be maintained by breaking the
flow of information in another place: by keeping public keys
anonymous. The public can see that someone is sending an
amount to someone else, but without information linking
the transaction to anyone” [3|]. Unfortunately, this level of
privacy has proven to be far insufficient in the face of modern
clustering and analysis tools [4]] [S]]. Non-financial applications
make maintaining privacy even more difficult, as they often
require users to publish other kinds of information about
themselves on chain. For example, registering a name on
decentralized domain name services such as ENS [6] involves
making a transaction on the Ethereum blockchain, creating a
public link between your transactions and your ENS name.

For this reason, there has been a movement toward im-
proving privacy on public blockchains by introducing more
powerful technology. The earliest non-trivial privacy solution
that saw a significant degree of adoption was CoinJoin [7].
CoinJoin involved small groups of users coming together and
mixing their coins with each other within a single transaction.
Looking at the chain, one could only see the total set of inputs
and outputs of a given round of the CoinJoin protocol, and not
which input corresponds to which output. The theory was that
a user could participate in many rounds of the CoinJoin proto-
col with different groups of people, thereby hiding the source
of their assets among many possible inputs. Monero took this a
step further, using a linkable ring signature scheme [[8] to allow
users to mix their coins with a few other users’ coins without
requiring any off-chain interaction. With improvements to
technology [9]], the number of participants in each mix grew,
increasing the anonymity set of each transaction: the number
of historical transactions that could have been the origin of

that tranasction. However, such repeated small-group mixing
techniques inevitably still have data leakage risks [10].

The next logical advancement in the quest for increased
cryptographic privacy involved the introduction of general-
purpose zero-knowledge proofs, as used in blockchains like
Zcash [11] and on-chain smart contract systems like Tor-
nado Cash. Such systems allow the anonymity set of each
transaction to potentially equal the entire set of all previous
transactions. General-purpose zero-knowledge proofs of the
type applied here are more commonly referred to in the
industry and academic community as “ZK-SNARKs”.

B. ZK-SNARKs

ZK-SNARKSs are a technology that allows a prover to prove
mathematical claims about some combination of public data
and private data that the prover holds, in such a way that
satisfies two key properties:

o Zero-Knowledge: nothing about the private data is re-
vealed, aside from the fact that the private data satisfies
the claim that is being proven.

e Succinctness: the proof is short (in bytes), and can be
verified very quickly, even if the underlying claim being
proven involves a heavy computation that takes a very
long time to run.

ZK-SNARKs have received a lot of attention among
blockchain communities for both of these reasons. The suc-
cinctness aspect is key in use cases of ZK-SNARKs for
scalability, such as ZK-rollups [12]]. For the privacy use cases
we describe here, succinctness is not as important, but the
zero-knowledge aspect is essentialﬂ

The “claim” that is being proven by a ZK-SNARK is
expressed as a type of program that is often called a “cir-
cuit”. Mathematically, it suffices to think of it as a function
f(z,w) = {True,False}, where z is the public input, w
is the private input, and f(.) is the function being computed.
A ZK-SNARK proves that, for a given known both by the
prover and the verifier, the prover knows a w such that f(z,w)
returns True.

C. Example: ZK-SNARKs in Zcash and Tornado Cash-like
systems

Minor variations exist between different versions of Zcash,
and different versions of systems that have been inspired by
Zcash, such as Tornado Cash. However, the basic logic that
they depend on is very similar. This section describes a simple
version that roughly corresponds to how these protocols work.

A “coin” consists of a secret s held by its owner. Two values
can be derived from s:

o The public “coin ID” L = hash(s + 1)

For a more comprehensive introduction to ZK-SNAKRS see [13] and [14]

o The nullifier U = hash(s + 2)

The term hash refers to a cryptographic hash function, such
as SHA256. Given s, you can compute the coin ID and the
nullifier. Given a set of nullifiers and public coin IDs, however,
the pseudo-random behavior of the hash function ensures that
you cannot tell which nullifier is connected to which coin ID
unless you know the secret s that generated both.

The blockchain keeps track of all coin IDs that have already
been “created”, and all “nullifiers” that have already been
“spent”. Both sets are ever-growing (unless the protocol wishes
to enforce a time limit on when coins must be spent by).

The set of coin IDs is stored in a data structure called a
Merkle tree: if the tree contains N items, then each adjacent
pair of items is hashed (leading to [5] hashes), each adjacent
pair of those hashes is hashed (leading to [%1 hashes), and
so on until the entire data is committed to in a single “root
hash”.

Given a particular value in the tree, and a root hash, one
can provide a Merkle branch: the “sister values” that were
hashed together at each step along the path from that value
to the root. This Merkle branch is useful because it is a small
(loga(N) hashes) piece of data that can be used to prove that
any particular value actually is in the tree. Figure [I] shows an
example of a Merkle tree with height 4.

R

L

Fig. 1: Structure of a Merkle tree, highlighting the Merkle
branch for a given value in the tree. Orange is the leaf L
that is being proven; the bottom row of the tree represents the
entire dataset. Green is the root hash R. Blue is the path from
the leaf to the root. Purple are the sister nodes at each level.
Note that the path can be computed by starting with the leaf,
and hashing it together with the sister node at each level, so
there is no need to provide the path itself.

When a user sends a coin to someone else, they provide (i)
the nullifier U that they want to spend, (ii) the new coin ID
L’ of the coin that they want to create (they would ask the
recipient to give them this), and (iii) a ZK-SNARK.

The ZK-SNARK contains the following private inputs:

o The user’s secret s

o A Merkle branch in the coin ID tree, proving that the coin
with the coin ID L = hash(s + 1) actually was created
at some point in the past

It also contains the following public inputs:

o U, the nullifier of the coin being spent
e R, the root hash that the Merkle proof is checking against

The ZK-SNARK proves two properties:

o U = hash(s+ 2)
e The Merkle branch is valid

Outside of the ZK-SNARK, the protocol also checks that:

e R is a current or historical root hash of the coin ID tree
e U is not in the set of already-spent nullifiers

If the transaction is valid, it adds U to the set of spent
nullifiers, and L’ to the list of coin IDs.

On-chain root

R

Merkle
| tree nodes

L

(Space to add

Existing leaves .
xisting leaves future leaves)

Stored by user

Secret
L = hash(s +1)

Nullifier (secret

I
I
until coin is spent) 1 U= hash(s +2)

Fig. 2: Some of the data structures involved in a privacy-
preserving coin transfer system. The Merkle tree shown is the
coin ID tree; the nullifier set is not shown but is also stored
on chain. While a given coin exists but has not yet been spent,
the coin ID (L) is on chain, but the secret (s) and the nullifier
(U) are only known by the holder of the coin.

Revealing U prevents a single coin from being spent twice.
However, no other information is revealed. All that the outside
world sees is when transactions are being sent; they gain no
knowledge about the pattern of who is sending or receiving
these transactions, or which coin is the “same coin” as which
previous coin.

There are two exceptions to the above pattern: deposits
and withdrawals. In a deposit, a coin ID gets created without
requiring some previous coin to be invalidated. Deposits are
not privacy-preserving, in the sense that the link between a
given L and the external event that allowed the L to be
added (in Tornado Cash, a deposit of ETH into the system;
in Zcash, new ZEC coins being mined) is public. In other
words, deposits are connected to their past transaction history.
In a withdrawal, a nullifier is consumed without adding a
new coin ID. This can break the withdrawal’s link to the

corresponding deposit, and by extension to the past transaction
history. However, withdrawals can be linked to any future
transactions that occurred after the withdrawal event. [[1]]

The first version of Tornado Cash did not have a concept
of internal transfers, it only allowed deposits and withdrawals.
Later versions, still in experimental (alpha) stage, also allow
internal transfers, and coins of arbitrary denominations, includ-
ing support for the “splitting” and “merging” operations, the
handling of arbitrary denominations requires. We will discuss
how to extend both basic privacy-preserving coin transfer
systems, and Privacy Pools, to the arbitrary-denomination
context in a later section.

D. ZK-SNARKs in Privacy Pools

The core idea of Privacy Pools is this: instead of merely
zero-knowledge-proving that their withdrawal is linked to
some previously-made deposit, a user proves membership in a
more restrictive association set. The association set could be
the full subset of previously made deposits, a set consisting
only of the user’s own deposit, or anything in between. The
user specifies the set by providing a Merkle root of the set as
a public input.

For simplicity, we do not directly prove that the association
set actually is a subset of the previously-made deposits;
instead, we just require the user to zero-knowledge-prove two
Merkle branches, using the same coin ID as the leaf in both
cases: (i) a Merkle branch into R, the root of the total set of
coin IDs, and (ii) a Merkle branch into the provided association
set root R 4. This is illustrated in Figure [3]

Fig. 3: A user zero-knowledge-proves two Merkle branches:
one proving that their coin ID is somewhere in the coin ID
tree, and another proving that that same coin ID is somewhere
in the tree representing the user’s provided association set
(represented by its root R4).

The intention is that the full association set is made available
somewhere, either on-chain or in another location. This is the
core concept: instead of requiring the user to specify exactly
which deposit their withdrawal came from, or on the other
extreme providing no information at all beyond a proof of
non-double-spending, we let the user provide a set of possible
origins of their funds, and this set can be as wide or as narrow
as they wish. We encourage an ecosystem to form that makes it
easier for users to specify association sets that align with their
preferences. The rest of this paper will merely describe the
infrastructure on top of, and the consequences of, this simple
core mechanic.

ITI. PRACTICAL CONSIDERATIONS AND USE-CASES

After this technical introduction we now turn to the applica-
tion side and analyze how privacy-enhancing protocols could
be used in practice.

A. Use cases of association sets

To illustrate the value of this scheme in a law enforcement
context, let us consider a simple example. Suppose that we
have five users: Alice, Bob, Carl, David and Eve. The first
four are honest, law-abiding users who nevertheless want to
preserve their privacy, but Eve is a thief. Suppose also that this
is publicly known. The public may not know Eve’s real-world
identity, but they have enough evidence to conclude that the
coins sent to the address that we are labeling “Eve” are stolen.
This is often the case in practice: most of the illicit funds that
have been identified flowing into Tornado Cash have come
from a DeFi protocol exploit, an event which is visible on the
public blockchain.

When each of the five users withdraw, they have the choice
of which association set they specify. Their association set
must include their own deposit, but they can freely choose
which of the other addresses to include. Let us first consider
the incentives of Alice, Bob, Carl and David. On the one hand,
they want to maximize their privacy. This pushes them toward
making their association sets larger. On the other hand, they
want to reduce the chance that their coins will be viewed as
suspicious by merchants or exchanges. They have an easy way
to do this: They do not include Eve in their association set.
And so for all four of them, the choice is clear: make their
association sets {Alice, Bob, Carl, David}.

Eve, of course, also wants to maximize her association set.
But she cannot exclude her own deposit, and so she is forced
to make her association set equal the set of all five deposits.
The participants’ association set selection is shown in Figure

4

Despite the fact that Eve herself provides no information, by
a simple process of elimination we can make a clear inference:
withdrawal #5 could only have come from Eve.

B. Association set construction

The previous section illustrates one possible way to use
association sets in Privacy Pools-like protocols, and how
honest actors can disassociate them from bad actors. Note,
that the system does not rely on altruism on Alice, Bob, Carl
and David’s part; they have a clear incentive to prove their
disassociation.

Now let us have a closer look at the construction of
association sets. In general, there are two major strategies
to generate association sets. They are described below and
visualized in Figure [5]

Deposits in Association Set

Dep.1 Dep.2 Dep.3 Dep.4 Dep. 5

I I I
Alice || I I I | x
Bob || . . . | X
| | |
Carl || I I I | X
David || . . . | X
| | |
Eve | I I I I |

Fig. 4: The gray area in each row represents the respective
user’s association set. In our simplified example, we assume
that Alice, Bob, Carl and David include all other “good”
deposits in their respective association sets and exclude deposit
5, that originates from a known illicit source. Eve, on the other
hand, cannot create a proof that disassociates her withdrawal
from her own deposit.

e Inclusion (or membership): identify a specific set of
deposits for which we have specific evidence to believe
that they are low-risk, and construct an association set
containing only those deposits.

« Exclusion: identify a specific set of deposits for which we
have specific evidence to believe that they are high-risk,
and construct an association set containing everything but
those deposits.

(b) Exclusion Proof

(a) Membership Proof

Privacy Pools
Privacy Pools

. =

. ¥,
7 e s
s 7 s 7

(I a,
’ 7

O 7

Deposits Withdrawal Deposits Withdrawal

Fig. 5: The membership proof includes a specific collection
of deposits in its association set while the exclusion proof’s
association set consists of anything but a specific collection
of deposits. From a technical perspective they are identical, as
they both prove against the Merkle root of an association set.

In practice, users will not be manually picking and choosing
deposits to include in their association set. Rather, users
will subscribe to intermediaries that we can call association
set providers (ASPs), which generate association sets that
have certain properties. In some cases, ASPs can be entirely
constructed on-chain, with no human (or Al) intervention
required. In other cases, ASPs would generate association sets
on their own, and publish the association sets either on-chain

or in another location.

We strongly recommend that at least the Merkle root of the
association set should be published on-chain; this removes the
ability for malicious ASPs to engage in certain types of attacks
against users (e.g., giving different users different association
sets in an attempt to deanonymize them). The sets as a whole
should be available either by API, or ideally on a low-cost
decentralized storage system such as IPFS.

The ability to download the entire association set is impor-
tant, as this allows users to generate proofs of membership
in the association set locally, without revealing any extra
information, even to the ASP, about which deposit corresponds
to the withdrawal that they are making.

Here are some possible constructions for how ASPs might
operate in practice:

o Add with delay, exclude bad actors: any deposit is
automatically added to the association set after a fixed
period of time (e.g. 7 days), but if the system detects
that a given deposit is connected to known bad behavior
(e.g. large-scale thefts, or addresses on a government-
published sanctions list), the deposit is never added.
In practice, this could be implemented through either
community-curated sets, or through existing transaction
screening service providers that already perform the work
of identifying and tracking deposits connected to bad
behavior.

o $N per month per person: to join the association set,
a deposit’s value must be less than some fixed maxi-
mum, and the depositor must zero-knowledge-prove that
they hold some proof-of-personhood token (e.g. either
a government-backed national ID system, or a lighter
mechanism such as social media account verification).
A nullifier mechanism, with an extra parameter mixed
in representing the current month, is used to ensure that
each identity can submit a deposit into the association
set exactly once per month. This design attempts to
implement the spirit of many common AML rules today,
where low-value payments below a certain threshold are
allowed a much greater level of privacy than high-value
payments. Note that this can be implemented entirely as a
smart contract, requiring no manual oversight to maintain
ongoing operation.

e $N per month per trusted community member: the
same as $N per month per person, but more restrictive:
a user must prove membership in a high-trust commu-
nity. The high-trust community agrees that its members
provide privacy for each other.

o Real-time Al-based scoring: AI ASP systems could
provide a risk score for each deposit in real time, and the
system would output an association set containing those
deposits whose risk score is below a certain threshold.
Potentially, the ASP could output multiple sets corre-
sponding to multiple risk score threshold levels.

IV. FURTHER TECHNICAL DETAILS

In this section we analyze how the proposal could support
arbitrary denominations and discuss special cases like re-
proofing, bilateral direct proofs and sequential proofs.

A. Supporting arbitrary denominations

The simplified, privacy-preserving coin systems above only
support coin transfers in the same denomination. Zcash sup-
ports arbitrary denominations through its use of a UTXO
model. Each transaction can have multiple inputs (requiring
the publication of a nullifier for each input) and multiple
outputs (requiring the publication of a coin ID for each
output). Each coin ID created must come with an encrypted
denomination value. In addition to proving validity of the
nullifiers, each transaction must also come with an additional
proof proving that the sum of the denominations of the coins
being created does not exceed the sum of the denominations
of the coins being spent. Figure [f] illustrates this additional
proof.

Inputs Outputs:
N] Cl
Balance: Balance:
N Cy
Balance: [Balance:
Proof: + % + .

Fig. 6: The ZK-SNARK proves an additional claim, that the
encrypted denominations represent numbers such that the sum
of the numbers on the output side does not exceed the sum of
the numbers on the input side. Depending on the construction,
it may also require an explicit proof that all of the newly
created coin denominations are non-negative.

This design can be extended to support deposits and with-
drawals by simply treating the deposit as an (unencrypted)
input and the withdrawal as an (unencrypted) output. Alter-
natively, the design can be restricted to simplify analysis. For
example, one could allow only partial withdrawals, allowing
transactions to have one encrypted input and two outputs:
one unencrypted output representing the withdrawal and an
encrypted “change” output representing the remaining funds,
which can be used in future withdrawals.

A natural question arises of how this design can be extended
to support Privacy Pools. Simply plugging it into Privacy Pools
“as-is” is not ideal, because the transaction graph does not line
up with what we intuitively expect: if a user makes a deposit
of 10 coins, and then spends it in four successive withdrawals
of 1 + 2 + 3 + 4 coins, what we want is to treat all four
withdrawals as having the original 10-coin deposit as a source.

But what we get is shown in Figure [/} the first withdrawal has
the 10-coin deposit as a source, but then the second withdrawal
has the 9-coin change output created by the first withdrawal
as its source, and so forth. This causes problems in practice,
because it requires the ASP to verify the intermediate deposits
and add them to its association set.

Address 1

1 coinT

Privacy

Address 2

2 coinsT

Privacy

Address 3

3 coinsT

Privacy

Address 4

4 cuinsT

Privacy

10 coins

Pools 9 coins Pools 7 coins Pools 4 coins Pools

Fig. 7: In the UTXO graph, it appears that each withdrawal’s
source is the change output of the previous partial withdrawal.
But in an economic sense, the “real” source in each case is
the original deposit.

If we want all four withdrawals in this example to be able
to claim the original 10-coin deposit as their source, we need
to solve for two problems at the same time: (i) make sure that
each partial withdrawal is not publicly linked to the others,
and (ii) allow each partial withdrawal to claim the deposit as
a member of its association set.

If we only support partial withdrawals (and not more
complicated multi-in multi-out transactions), ensuring that
each withdrawal has a single defined corresponding “original
deposit”, then there are many ways in which we could do
this directly. One natural, and very extensible, approach is
to propagate some commitments to information through the
transactions. For example, we could require a transaction to
contain a commitment hash(coinl D+hash(r)), adding some
random value r for blindness, and require the ZK-SNARK
to prove that the commitment in a transaction commits to
the same value as its parent, if the parent is itself is a
withdrawal, or simply commits to the original deposit’s coin
ID, if the parent is a deposit. As a result, each transaction in
the chain would have to contain a commitment to the original
deposit coin ID, and this value would be proven to be in the
transaction’s provided association set.

To improve privacy against balance-summing attacks (e.g. if
I deposit 10 coins, and then withdraw 7.2859 and later 2.7141,
those two withdrawals could be correlated based solely on the
amounts), we may want to also support coin merging: if 1
have a few coins left, I could merge them in along with my
next deposit. To adapt to such a scenario, we could require
the transaction to commit to a set of coin IDs, and require
a transaction with multiple inputs to commit to the union of
its parents. A withdrawal would contain a proof that all of its
committed coin IDs are in its association set.

B. Special Cases

1) Re-Proofing: To withdraw a deposit from a Privacy
Pools-like protocol, the user needs their secret deposit infor-
mation. That same secret information is then used to construct
association set membership proofs. Consider a situation where

Alice withdrew her funds, and created and published an associ-
ation set membership proof. Later, she would like to spend her
funds at a merchant that requires a proof against a different set.
As long as Alice held on to her secret information, she will be
able to generate a new proof against the merchant’s association
set. In a similar way, Alice could generate a new proof against
an updated version of the initial association set. Keeping the
secret information around gives Alice more flexibility, but may
introduce additional risks.

Another scenario arises in the context of investigations of
a specific event. Suppose that some bad action involving on-
chain coins takes place, and an initial investigation reveals a set
of possible inputs that those coins could have come from. This
could be because the coins in question came from a withdrawal
whose association set was a small community, or because
of a combination of on-chain evidence and other evidence
that revealed partial information about who was behind the
event. In this case, the other members may want to prove
exclusion from that event to prove their innocence, and the
perpetrator’s identity would be revealed. Alternatively, if an
event is controversial but many people support it even if they
were not responsible themselves, they could refuse to make
such a proof.

2) Bilateral Direct Proofs: In some scenarios, a user may
need to disclose the precise origin of their withdrawal to
another party. For example, if Alice wants to deposit her
withdrawn funds with a bank, the bank might ask for the
full information about the funds’ origin. In response, Alice
can create an association set that contains her deposit only,
and construct a proof against this set. We expect these proofs
to be the exception and they only contribute towards partial
privacy if they are shared bilaterally. Moreover, sharing this
proof presumes a strong trust assumption that the recipient
will not distribute it further.

Another more advanced option is that Alice zero-
knowledge-proves that one of the following statements is true:
(i) “this withdrawal is in this association set”, or (ii) “I am the
bank”, or (iii) “according to this specific timestamping service
(can be a server or a blockchain), more than 10 seconds have
passed since the creation of this proof”. Only the bank, which
receives the proof in real time (iii) and knows that they did
not create the proof themselves (ii), would be able to trust the
proof: if the proof lands in someone else’s hands, it would be
difficult to convince the recipient that the proof is not forged.
This eliminates most of the counter-party risk regarding the
leakage of privacy.

3) Sequential Proofs: Let us imagine a longer-term future
scenario, where Privacy Pools-like systems are not merely
used occasionally, but rather are used in the vast majority
of transactions. This is the world that is desired by privacy-
first systems like Zcash. It introduces some new complexities
that do not appear in the world where Privacy Pools is used
occasionally.

To adapt to such a world, the following protocol modifica-
tion would be required: Along with the deposit and withdrawal
transaction types, the protocol would need to support an
internal send operation, which consumes an existing coin
ID and generates a new coin ID owned by someone else.
From a protocol analysis perspective, this is equivalent to the
sender withdrawing into the recipient’s address and then the
recipient immediately re-depositing, but it increases efficiency
by reducing the number of steps and on-chain proofs from two
to one.

Suppose that Alice sends a coin to Bob; that is, she makes
an internal send that (perhaps partially) consumes a coin ID
owned by Alice, and creates a new coin ID with parameters
provided by Bob. Bob then wants to immediately spend the
coin, sending it to Carl, and he would prefer his spending
transaction to be private as well. Here we have our challenge:
inclusion delays. In many of the configurations we proposed
above, ASPs would not be willing to immediately add Bob’s
new coin to their association set, because they need to watch
for the possibility that the source of funds is not Alice, but
instead someone who just stole the funds from Alice’s wallet.
The inclusion delay is there to give Alice time to report the
incident, or third parties time to detect it.

Another similar use case would be: “Alice” is a DeFi
protocol, and Bob wants to withdraw funds from the DeFi pro-
tocol and immediately use those funds to privately pay Carl.
This scenario has one fewer human being, but is otherwise
structurally very similar.

In a rapidly transacting economy, the same funds could
move around multiple times per week or even more frequently,
and inclusion delays would pose a serious challenge. One
possible solution for this problem may simply be: in the case
where no coins in a user’s wallet are “mature” enough to be
in an association set, the user could just send them through
a non-privacy-preserving transaction. However, we propose a
different alternative that leaks less information.

When Bob pays Carl, Bob also directly gives Carl the
Merkle branch and secret that were used to generate the
payment. This allows Carl to see what Bob sees: that the
payment from Alice was in the history of the coin. If, later
on, it turns out that a large number of coins associated with
some bad actor were deposited and quickly re-circulated, Carl
would be able to prove that his coins came from an ultimate
source that is disconnected from the bad actor.

If Carl then sends the coins to David, he would pass along
the Merkle branch and secret from Bob, and would also add his
own. Now, suppose that David next sends his coins to Emma,
but by the time he does this, the deposit that Alice made
has been added to the association set. Then, David no longer
needs to provide the Merkle branch and secret from Alice;
instead, he can simply generate an association set membership
proof on Alice’s behalf. Once Bob’s payment gets added to
the association set, Bob’s Merkle branch and secret similarly

become obsolete. The concept revolves around ensuring that
each user acquires only the essential and minimal information
required to have confidence in the funds they receive. Figure
[§ illustrates this example.

Privacy
Pools

Privacy
Pools

Privacy
Pools

David’s deposit not yet...

Carl — David

Carl’s deposit not yet in association set

Bob — Carl

Bob’s deposit not yet in association set

Alice — Bob

Alice’s deposit not yet in association set

Time

Fig. 8: When David sends his transaction to Emma, he needs
to provide the Merkle branch and secret from himself, Carl,
and Bob, but not Alice, because Alice’s payment to Bob is
now in the association set.

In practice, a coin may have multiple “sources”. Perhaps
Bob is a coffee vendor, and received 5 coins from Alice, 4
coins from Ashley, and 7 coins from Anne, and at the end of
the day needs to send 15 coins to Carl to pay for dinner. David,
in turn, perhaps received 15 coins from Carl, and another 25
coins from Chris, and wants to deposit 30 coins to Emma, who
is an exchange. In these more complicated cases, we follow
the same principle: history that is old enough that it has been
added to association sets can be ignored, and history that is
more recent needs to be passed forward.

V. DISCUSSION

Privacy Pools-like systems allow users to achieve more
privacy around their financial transactions data while retaining
the ability to prove their disassociation with known illicit
activity. We expect that honest users will be incentivized to
participate in such a scheme by a combination of two factors:
(1) the desire for privacy, and (ii) the desire to avoid suspicion.

A. Societal Consensus and Association Sets

If there is a perfect consensus on which funds are “good”
and which are “bad”, the system will lead to a simple sepa-
rating equilibrium. All users with “good” assets have strong
incentives and the ability to prove their membership in a
“good”-only association set. Bad actors, on the other hand,
will not be able to provide that proof. They could still deposit
“bad” funds into the pool, but it would not provide them any
benefits. Everyone could easily identify that the funds have
been withdrawn from a privacy-enhancing protocol and see
that the withdrawal references an association set that includes
deposits from questionable sources. More importantly, the
“bad” funds would not taint the “good” funds. When funds
from legitimate deposits are withdrawn, their owner can simply
exclude all known “bad” deposits from their association set.

In cases where there is no global consensus, and the
conclusion on whether funds are perceived as “good” or
“bad” depends on the societal perspective or the jurisdiction,
association sets could differ significantly. Let us assume that
there are two jurisdictions with distinct rule sets. Subjects
to jurisdictions A and B could both use the same privacy-
enhancing protocol and choose to issue a proof, that satisfies
their respective jurisdiction’s requirements. Both could easily
achieve privacy within their own association set and exclude
withdrawals that are not compliant under the respective juris-
diction. If needed, one could issue a membership proof against
the intersection of both association sets and thereby credibly
demonstrate that the deposit corresponding to their withdrawal
is in line with the requirements of both jurisdictions.

As such, the proposal is very flexible and should be regarded
as neutral infrastructure. On the one hand, it is censorship
resistant. It allows anyone to affiliate with the association set
of their choosing, and remain private within their own com-
munity. On the other hand, outsiders can ask for proofs against
specific association sets that are in compliance with their
regulatory requirements. So even if there were a community of
bad actors within the privacy-enhancing protocol, they could
not obfuscate the questionable source of a deposit as long as
the information is reflected accurately in the construction of
the association set.

B. Association Set Properties

Association sets require certain properties for them to be
effective. The sets need to be accurate so that users can trust
that they can safely spend their funds after withdrawing them.
Also, the properties of each set should be stable, meaning
they are unlikely to change over time. This limits the need for
re-proofing withdrawals against new sets. Finally, to achieve
meaningful privacy, it is important to make sure the association
set is sufficiently /arge and includes a wide variety of deposits.
These characteristics are, however, in conflict with each other.
Generally speaking, large and diverse sets may have better
privacy properties bu are likely to be less accurate and stable,
while smaller sets are easier to maintain but provide less
privacy.

C. Practical Considerations and Competition

Regulated entities that accept crypto assets must ensure
that the laws and regulations they are subject to permit
the acceptance of such funds. Today, many of these entities
rely on so-called transaction screening tools: a software or
a service that analyzes the blockchain to identify potential
suspicious activity, connections to illicit addresses or other
non-compliant transactions. Screening tools typically express
the risk associated with each transaction through a risk score.
This score is based on the destination of the transmitted funds,
and their transaction history. Privacy-enhancing protocols can
be a challenge in that regard. They remove the visible link
between deposits and withdrawals. Hence, in the presence

of a privacy enhancing protocol, a risk score would have to
consider the proofs and assign a score based on the association
set.

The tools and services for transaction screening are mainly
provided by specialized companies with expertise in both
blockchain analysis and the relevant legal fields. Ideally, these
companies (and everyone else) have access to all membership
proofs and their corresponding association sets to provide ac-
curate risk score across all transactions. We therefore suggest
that all proofs are stored on the blockchain or in another
publicly accessible proof repository. The only exception are
membership proofs of size one, that are shared with a specific
counterparty. For obvious reasons these proofs should not be
publicly available.

Having the proofs readily available on-chain, introduces ad-
ditional transaction costs, but reduces the coordination effort,
levels the playing field and mitigates the risk that screening
tool providers could have a quasi-monopoly due to their
knowledge of non-public proofs.

The general setup of Privacy Pools is very flexible. By
creating specific association sets, the protocol can be cus-
tomized to suit a large variety of use cases. Here are two
examples of such specialized association sets: (i) A consortium
of commercial banks could create an association set that only
includes their customers’ deposits. This guarantees that any
withdrawal creating a proof against this set has undergone
the Know Your Customer (KYC) and Anti-Money Laundering
(AML) procedure at one of the banks involved, but does
not reveal which withdrawal belongs to which customer. (ii)
In cases where a financial intermediary must document the
precise source of funds, they can request the user to provide
proof against an association set that only includes the user’s
deposit. This proof is then exchanged bilaterally with the
intermediary, enabling them to track the funds as though the
user never utilized Privacy Pools. While this requires the user
to trust that the intermediary will not disclose the proof,
ideally, it allows the user to comply with regulations, without
having to disclose the information to the general public.

D. Design Choices and Alternatives

A setup based on association sets, zk-proofs, and voluntary
disclosure is very flexible. While this is great to ensure that the
proposal can potentially be adapted to various jurisdictions,
one should be very careful with respect to specific design
choices. In particular, there are two potential adjustments we
oppose. We believe that they are problematic in their trust
requirements, and may generate quasi-monopolistic market
structures.

In the following we briefly describe and discuss these
alternative approaches:

1) Centralized access: law enforcement agencies, crypto
risk scoring providers or similar actors could get access

to see the links between a user’s transactions, while they
remain private from everyone else.

2) System-wide entry allowlisting: a privacy system can
impose a restriction on what kinds of users can deposit
coins into its pool, either requiring them to provide
an additional proof or requiring deposits to wait for
some time period during which a centralized risk scoring
system could reject a deposit.

Both approaches are quite similar, in the sense that they
give special privileges to specific entities. This would lead to
complex governance questions: Who does get access to this
information? Who has the power to manage permissions?

Private firms do not seem to be a good option, as any
special privileges would likely generate oligopolistic market
structures, where a few firms have access to data that would
allow them to provide these services, while everyone else
would not be able to compete.

Similarly, there would be numerous governance and po-
litical questions if the power is given to public institutions,
particularly in an international context. Even if a backdoor key
would be given to an institution that is 100% trustworthy today,
does not misuse this power for a political agenda, and has no
dependencies on other entities who might pressure it towards
misusing its power, it would be naive to believe that this is a
static game. Organizations, their members, nation states and
the political structures within the organization change over
time. There might be outside pressure and the existence of
these special privileges may generate additional incentives
for bad actors to undermine, and gain influence over the
organization’s governance system.

Moreover, an attack from within or outside the organization,
or a mistake by a representative of the centralized entity could
have far reaching consequences. We believe that the creation
of such a central point of failure should be prevented.

That said, we acknowledge that different transaction sizes
and situations may warrant different combinations of proofs.
For example, for large transactions, many users will likely end
up providing a basic exclusion proof on-chain, and additionally
provide more detailed information about the source to their
counterparty.

E. Further Research Potential

While this study provides an overview of how zkSNARK-
based privacy-enhancing protocols could be used in a regu-
lated environment, there are several areas that warrant further
investigation.

First, it is important to be aware that the privacy obtained
through these protocols depends on many different factors.
Insufficiently large association sets, inappropriate root choices,
and user mistakes may allow a dedicated attacker to link a
withdrawal to a specific deposit. Moreover, the choices of other
users can adversely affect your own privacy. In an extreme

case, everyone else in the pool would publish a membership
proof of size one, revealing the direct link between their de-
posit and withdrawal. Obviously, this would implicitly reveal
the link between the only deposit and withdrawal transactions
that are left. In a more nuanced example, the constraints
from various membership proofs could be used to extract
information and potentially link deposits and withdrawals
with a high probability. Once the information from these
proofs is combined with transactional metadata, the privacy
properties of the protocol could be undermined. Last but not
least, a malicious ASP could choose to compile the proposed
association sets in a way that allows them to maximize the
extractable information or inflate the perceived anonymity by
adding deposits for which the corresponding withdrawals are
known. All of these issues require further research to assess
the privacy properties provided. In a similar vein, it would
be interesting to further study the properties of the separating
equilibrium, model how good and bad actors would behave
under certain assumptions and how public proofs of the former
would affect the privacy of the latter. Finally, legal scholars
could further investigate specific disclosure requirements. The
proposal outlined in this paper is highly adaptable and insights
from legal experts could aid in tailoring the protocol and the
ecosystem around it to ensure compliance across various legal
jurisdictions.

VI. CONCLUSION

In many cases, privacy and regulatory compliance are
perceived as incompatible. This paper suggests that this does
not necessarily have to be the case, if the privacy-enhancing
protocol enables its users to prove certain properties regarding
the origin of their funds. For instance, suppose users can
demonstrate that their funds have no ties to deposits from
known illicit sources, or prove that the funds are part of a
specific set of deposits, without revealing any further infor-
mation.

Such a setup can generate a separating equilibrium, where
honest users are strongly incentivized to prove membership
in a given, compliant association set, while still enjoying
privacy within that set. Conversely, for dishonest users it is
impossible to provide such a proof. This allows honest users to
disassociate themselves from third-party deposits they do not
agree with or might otherwise prevent them from using their
funds in a regulated environment. We argue that the proposal
is quite flexible and can be adapted to potentially satisfy a
large variety of regulatory requirements.

The paper should be seen as a humble contribution towards
a potential future, in which financial privacy and regulation
can co-exist. We want to foster a discussion and shift the
conversation in a more positive and constructive direction.
Cooperation between practitioners, academics from various
fields, policymakers and regulators will be needed to extend
and modify this proposal; with the ultimate goal to create

privacy-enhancing infrastructure that can be used in a regulated
environment.

ACKNOWLEDGMENT

Special thanks to Mitchell Goldberg, Katrin Schuler and
Dario Thiirkauf for their valuable inputs, Emma Littlejohn for
proof-reading and Dario Thiirkauf for his support with the
graphical design.

REFERENCES

[1] M. Nadler and F. Schir, “Tornado cash and blockchain privacy: A primer
for economists and policymakers,” Federal Reserve Bank of St. Louis
Review, vol. 105, no. 2, pp. 122-136, 2023.

[2] A. Soleimani, “Privacy pools,” 2023, gitHub repository. [Online].
Available: https://github.com/ameensol/privacy-pools

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[4] S. Meiklejohn et al., “A fistful of bitcoins: Characterizing payments
among men with no names,” 2013. [Online]. Available: https:
/lcseweb.ucsd.edu/~smeiklejohn/files/imc13.pdf]

[5] C. Kang et al., “De-anonymization of the bitcoin network using address
clustering,” 2020. [Online]. Available: http://dpnm.postech.ac.kr/papers/
Blocksys/changhoon_blocksys2020.pdf]

[6] “Ethereum name service, decentralised naming for wallets, websites, &
more,” 2023. [Online]. Available: https://ens.domains/

[71 G. Maxwell, “Coinjoin: Bitcoin privacy for the real world,” 2013,
accessed: August 22. [Online]. Available: https://bitcointalk.org/?topic=
279249

[8] J. Liu et al., “Linkable spontaneous anonymous group signature for ad
hoc groups,” 2004. [Online]. Available: https://eprint.iacr.org/2004/027.
pdf

[9]1 B. Goodell et al., “Concise linkable ring signatures and forgery against
adversarial keys,” 2019. [Online]. Available: https://eprint.iacr.org/2019/
654

[10] M. Moser et al., “An empirical analysis of traceability in the monero
blockchain,” 2018. [Online]. Available: https://arxiv.org/pdf/1704.04299/

[11] “Zcash,” 2023. [Online]. Available: https://z.cash/

[12] V. Buterin, “An incomplete guide to rollups,” 2021. [Online]. Available:
https://vitalik.ca/general/2021/01/05/rollup.html

[13] M. Petkus, “Why and how zk-snark works,” CoRR, vol. abs/1906.07221,
2019. [Online]. Available: http://arxiv.org/abs/1906.07221

[14] A. Berentsen, J. Lenzi, and R. Nyffenegger, “An introduction to
zero-knowledge proofs in blockchains and economics,” Federal Reserve
Bank of St. Louis Review, no. forthcoming, 2023. [Online]. Available:
https://research.stlouisfed.org/publications/review/2023/05/12/
an-introduction-to-zero-knowledge- proofs-in-blockchains-and-economics

https://github.com/ameensol/privacy-pools
https://bitcoin.org/bitcoin.pdf
https://cseweb.ucsd.edu/~smeiklejohn/files/imc13.pdf
https://cseweb.ucsd.edu/~smeiklejohn/files/imc13.pdf
http://dpnm.postech.ac.kr/papers/Blocksys/changhoon_blocksys2020.pdf
http://dpnm.postech.ac.kr/papers/Blocksys/changhoon_blocksys2020.pdf
https://ens.domains/
https://bitcointalk.org/?topic=279249
https://bitcointalk.org/?topic=279249
https://eprint.iacr.org/2004/027.pdf
https://eprint.iacr.org/2004/027.pdf
https://eprint.iacr.org/2019/654
https://eprint.iacr.org/2019/654
https://arxiv.org/pdf/1704.04299/
https://z.cash/
https://vitalik.ca/general/2021/01/05/rollup.html
http://arxiv.org/abs/1906.07221
https://research.stlouisfed.org/publications/review/2023/05/12/an-introduction-to-zero-knowledge-proofs-in-blockchains-and-economics
https://research.stlouisfed.org/publications/review/2023/05/12/an-introduction-to-zero-knowledge-proofs-in-blockchains-and-economics

	Introduction
	Technical Background
	Blockchain privacy before ZK-SNARKs
	ZK-SNARKs
	Example: ZK-SNARKs in Zcash and Tornado Cash-like systems
	ZK-SNARKs in Privacy Pools

	Practical Considerations and Use-Cases
	Use cases of association sets
	Association set construction

	Further technical details
	Supporting arbitrary denominations
	Special Cases
	Re-Proofing
	Bilateral Direct Proofs
	Sequential Proofs

	Discussion
	Societal Consensus and Association Sets
	Association Set Properties
	Practical Considerations and Competition
	Design Choices and Alternatives
	Further Research Potential

	Conclusion
	References

